Spatial disparities in developing countries:
cities, regions and international trade.

Anthony J. Venables
London School of Economics and Centre for Economic Policy Research

Abstract:
Spatial inequality in developing countries is due to the natural advantages of
some regions relative to others and to the presence of agglomeration forces,
leading to clustering of activity. This paper reviews and develops some simple
models that capture these first and second nature economic geographies. The
presence of increasing returns to scale in cities leads to urban structures that are
not optimally sized. This depresses the return to job creation, possibly retarding
development. Looking at the wider regional structure, development can be
associated with large shifts in the location of activity as industry goes from being
inward looking to being export oriented.

* This paper was produced as part of the UNU-WIDER project on Spatial inequalities in
developing countries.

KEY WORDS: cities, spatial disparities, urbanisation, developing countries.
JEL classification: R1, R12, O18

Contact details:
A.J. Venables
London School of Economics
Houghton Street
London WC2A 2AE
UK
a.j.venables@lse.ac.uk
http://econ.lse.ac.uk/staff/ajv/
1. Introduction:

There are now numerous studies charting the evolution of spatial disparities during economic development. In many countries a subset of regions leads in manufacturing activity, creating jobs and drawing in population from other regions. This can be seen most clearly in the experience of some of the large developing countries, such as China, Mexico, Brazil and India but also occurs in smaller countries. In Mexico manufacturing has become highly concentrated in regions that border the US, and spatial variation in per capita incomes has increased dramatically since the mid 1980s (Cikurel 2002). In China, Demurger et al (2002) chart increasing spatial inequalities in per capita GDP from the mid 1980s: coastal provinces experienced the greatest decline in the share of agriculture in employment and output, and the fastest growth of per capita income. In India, southern states have come to prominence in manufacturing and tradable services (Besley and Burgess 2002).

The spatial concentration of new activities also occurs at a much finer level of disaggregation than suggested by state or province level data. In virtually all countries development is associated with urbanisation and the growth of prime cities, often far more dominant in modern developing countries than are (or were) such cities in the developed world. The number of cities in the world with a population of more than 1 million went from 115 in 1960 to 416 in 2000; for cities of more than 4 million the increase was from 18 to 53, and for more than 12 million from 1 to 11 (Henderson and Wang 2003). In some cases the most successful cities exhibit a high degree of sectoral specialisation -- for example, Bangalore’s software specialism. The growth of cities tells us that, despite diseconomies associated with developing country mega-cities, there are even more powerful economies of scale making it worthwhile for firms to continue to locate in these cities.
These changes in spatial structure indicate a ‘lumpiness’ in economic development. Far from being a process of smooth convergence, development is highly spatially differentiated. This poses a number of questions for economic theory. The first is, why do these spatial disparities develop? This question can be addressed by drawing on the economic geographer’s distinction between first nature and second nature geography. First nature simply says that some regions are favoured by virtue of endowments or proximity to rivers, coasts, ports and borders. Evidently, these factors account for much of the success of coastal China relative to the north-west, or border states of Mexico relative to the south. Second nature emphasises the interactions between economic agents, and in particular the increasing returns to scale that can be created by dense interactions. Thus, cities tend to have high productivity, and agglomeration forces act to generate virtuous circles of self-reinforcing development. These forces have been extensively researched in recent years although much remains to be done, particularly in the context of developing countries.¹ What determines the strength of these forces? How do they depend on aspects of the economic environment such as openness to trade, the stock of labour skills, and the policy environment?

The second question is: how do spatial disparities evolve during development, and to what extent are they self-correcting or persistent? Empirically, we know from the work of Williamson (1965) and others that there is a tendency for spatial inequalities to increase and then decrease. But from the standpoint of theory, what factors are conducive to spread of activity or to persistence of disparities? Is there a ‘normal’ pattern that countries might be expected to follow? As development proceeds to what extent does activity spread out of existing agglomerations, and to what extent is labour drawn into these centres? These questions are particularly important in the context of urbanisation. The development of new
urban centres likely involves increasing returns, arising from both infrastructure investments and clustering externalities between firms. How easy is it for new centres of activity to become established, or does activity tend to be locked in to existing centres? What institutional structures are conducive to the birth of new centres and the consequent spread of activity?

The third set of questions are to do with real income and welfare, in both the short- and the long-run. Second nature agglomeration forces are inherently associated with market failure so equilibrium city structures are likely to be inefficient. Are developing county cities too large or too small, and are there too many or too few of them? Should new city development be promoted or neglected? Most importantly, just as growth shapes the spatial structure of the economy, so also the spatial structure shapes the growth process. If a country’s spatial structures are wrong then this may reduce the returns to modern sector investment and thereby damage long run growth.

This paper takes some steps towards addressing these issues, investigating the spatial path that a growth process might take and the welfare properties of this path. We first (section 2) draw on standard models of urban economics, extending these models to incorporate both first and second nature geography, and using them to investigate the consequences of alternative urban institutional structures. We show that market failures lead to sub-optimal city size structures and, by depressing the return to job creation, can retard development and perhaps also create the possibility of being stuck in a low level equilibrium trap. We then (section 3) move on to the broader picture of regional development. Whereas in the urban models all spatial linkages are within cities, in this section we draw on ‘new economic geography’ models to capture broader spatial interactions. These models illustrate
how there can be dramatic shifts in countries’ internal economic geography during the process of development.

2. Cities

We start by setting out a simply analytical framework within which the relationship between city structure and economic growth can be examined. We suppose that, in a given country, there are a large number of potential city locations, labeled by subscript i. These are not all ‘greenfield’ and may include existing towns or cities which are potential hosts for the development of modern sector activity. The number of workers in such sectors in city i is n_i. These can be thought of as ‘worker-firms’, whose productivity in city i is given by $q_i a(n_i)$ so the total output of the city is $n_i q_i a(n_i)$. This productivity function has two components. The first, q_i, captures the ‘first nature’ characteristics of the city. These include city ‘endowments’ – such as location, climate, and business environment -- and also spatial variations in prices. For example, one way to think of q_i is in terms of cities producing an export good, the price of which (net of trade costs) depends on distance from a coast or border. We order cities such that $i = 1$ is the best location and q_i is decreasing with i.

The second component, $a(n_i)$, captures the idea that productivity depends on the number of workers in the same city, n_i. We generally take $a(n_i)$ to be increasing, at least up to some point, and concave. Thus there are initially increasing returns to expanding each city, although beyond some point negative externalities may come to dominate so further increases in city size reduce productivity. Importantly, these returns to scale operate at the city level, so are external to the actions of individual worker-firms. Whenever $a'(n) \neq 0$ externalities are present, creating market failure, unless some institution exists to internalise them. The source of the returns to scale may be knowledge spillovers or thick market effects, but in this section
of the paper we will not model the underlying forces driving these returns to scale, simply taking their presence as a fact.³

Scarcity of land in each location means that land prices are increasing with population. Drawing on the urban economics tradition to model this, city workers pay a commuting cost, (linear in distance) to reach the central business district in each city. We assume that cities occupy a linear space and each worker occupies one unit of land.⁴ If commuting costs are \(2t\) per unit distance, then a city with \(n\) workers has total commuting costs of \(mn^2/2\), creates rents of \(mn^2/2\), and has rent plus commuting costs per worker of \(m\).

In addition to its cities, each economy has an agricultural sector producing output \(Y(L-N)\) where \(L\) is the economy’s total labour force, and \(N\) is total urban employment, \(N = \sum_i n_i\). The production function \(Y(.)\) is strictly concave, so an increase in the total urban population, \(N\), raises the marginal product and the wage in agriculture, \(w(N) = Y'(L-N), w' > 0\). The economy is open to trade and faces constant world prices for its output. For simplicity we assume that consumer goods (apart from land) have the same price (unity) in all locations. Housing and agricultural rents are distributed equally amongst the population in a lump sum manner.

The private return to a job in city \(i\) will be denoted \(\pi(n_i, q_i)\) and takes the form

\[
\pi(n, q_i) = q_i a(n_i) - m_i - w(N)
\]

This is the value of output generated by the job, minus the costs of employment. These are the agricultural wage, \(w(N)\), and the commuting cost plus rent of workers (equal to the commuting costs of the marginal worker). Our key assumption is that \(\pi(n_i, q_i)\) is increasing in \(n_i\) up to some value, diminishing thereafter, and concave. This arises as increasing returns in the technology, \(a' > 0\), are offset by commuting costs, \(t\); at low values of employment \(q_i a'\)
> t, but concavity of \(a(n_i) \) means that beyond some point this inequality is reversed. We also assume that at low values of \(N \) there are spatial distributions of \(n_i \) for which some \(\pi_i \) are strictly positive – ie, the technology \(q_i a(n_i) \) is good enough for this economy to be able to develop an urban structure.

2.1. First nature, second nature and urban growth:

The framework we have set out incorporates both first and second nature geography. What do these forces imply for the spatial pattern of growth and development? Before turning to a detailed analysis of the determinants of city structure we motivate the discussion by illustrating some possible development paths.

As outlined above, locations are ranked according to productivity parameter \(q_i \). Suppose first that there are no increasing returns or externalities, so \(a'(n) = 0 \) for all \(n \). With this assumption \(\pi(n_i, q_i) \) is decreasing in \(n_i \). What does growth look like in this economy? Figure 1a gives an illustrative example. The horizontal axis is \(N \), the total employment in manufacturing, and we assume that this increases at a rate that is exogenously given. (We return to fuller treatment of this in sections 2.3 and 2.4). The vertical axis is employment in each location, and the curves give employment for the best location, \(n_1 \), second best, \(n_2 \) and so on. Worker-firms are perfectly mobile, and go wherever the returns to a job are highest. Equilibrium \(n_i \) is therefore determined by the condition that all active cities have the same value of \(\pi(n_i, q_i) \), a value which exceeds that in any location that is not active.\(^5\) The growth pattern is as would be expected. At any point in time (any value of \(N \)) only a subset of potential locations are active, this determined by their first nature advantage. Increasing \(N \) causes both intensive and extensive growth. Existing cities get larger but they encounter diminishing returns to scale because of the presence of commuting costs. This reduces the
returns to a job in the city, \(\pi(n_i, q_i) \), making it worthwhile to start activity in the next city, and so on.

Evidently, this economy has a spatial structure that evolves during development, and there is increasing then decreasing spatial disparity as activity is initially concentrated in a few locations, then spreads out. The spatial structure described is a distribution of employment, but what about the distribution of income? Urban workers receive a nominal income greater than the agricultural wage in order to cover their rent and commuting costs, and, given a value of \(N \), there may also be surplus earned on each urban job, \(\pi(n_i, q_i) > 0 \). Whether urban workers have higher real income than agricultural depends on the distribution of this surplus between workers and firms, which may in turn depend on local labour market conditions and the willingness of workers to migrate. We investigate these issues no further in the present paper, but see Kanbur and Rappoport 2003.

How are things different when second nature geography is also present? A non-convexity arises because \(\pi(n_i, q_i) \) is increasing in employment for small values \(n_i \), before it starts decreasing. The incentive to start a new city now depends on the mass of workers who can coordinate their decisions. We discuss this in more detail in section 2.2 below, and now simply assume that active cities expand up to the point at which it becomes profitable for a single small worker-firm to set up in a new location. Thus, employment levels are such that each active city has the same return to jobs, \(\pi(n_i, q_i) \). Expansion eventually brings a decline in this return, and a new city is born when it reaches the level at which it equals the return to establishing a job in a new location. An illustration of the associated growth process is given in figure 1b.

The growth process is now much ‘lumpier’, with cities developing in sequence, rather than in parallel. First nature determines the order of development and, at any point in time,
predicts which locations are successful and which are not. However, the dependence of performance on first nature is not continuous. Very small differences in first nature can translate into large differences in outcomes for locations at the margin of development. Conversely, improving a location’s first nature does not necessarily confer any immediate payoff in terms of attracting the activity, as the location may remain below the current threshold. And amongst the set of active locations, differences in first nature have little effect on employment, as they are dominated by acquired second nature advantages. Furthermore, development is more spatially concentrated with (for any given value of N) activity concentrated in fewer and larger locations. This is consistent with the stylised facts as we outlined them in the introduction. We should also note that it is likely that at least some of increasing returns are sector, as well as location specific. Growth is then associated with the development of sectorally specialised cities, and this too is consistent with evidence. Since productivity functions are in this case sector specific, quite different city size structures might be observed (Henderson 1974).

With this overview of the model we now turn to more detailed analysis. We first (section 2.2) ask the question; what determines the size and number of cities, and what inefficiencies are present at equilibrium? The answer to this question is sensitive to the cities’ institutional structure -- the land market and the extent to which agents are able to internalise the externality. This issue has been addressed in the literature (see Abdel-Rahman and Anas 2003 for a survey). We argue that some of the institutional assumptions employed in this literature are inappropriate, particularly for developing countries, and present some new results. We then turn to a second question (section 2.3); how does urban structure affect the incentive to create jobs and hence levels of modern sector employment, N? Different institutional structures imply different values of job creation, π, so if N responds
endogenously to π, they will also imply different levels of modern sector employment and wages. While section 2.3 gives a long run analysis, section 2.4 sketches a dynamic version of the model, in which the market failures associated with urban development can lead to multiple equilibria and the possibility of an economy being stuck in a low level equilibrium.

2.2 Optimal and equilibrium urban structures:

Given the overall level of modern sector employment, N, are equilibrium city sizes larger or smaller than socially optimal? The answer to this question depends on the extent to which externalities are internalised, and we compare three different possibilities. The benchmark case is the socially efficient outcome. For simplicity, we abstract from first nature for the remainder of this section, making all locations ex ante identical ($q_i = q$) and dropping the subscript i. To find the socially optimal outcome we maximise the following expression,

$$W = k[qn\alpha(n) - in^2/2] + Y(L - nk) + \lambda(N - nk),$$

(2)

in which there are k active cities each with population n. The first term is the value of output minus resources used in commuting in these k cities, and the second is the value of output in the agricultural sector. The last term captures the fact that total urban employment is fixed at N, so λ is the lagrange multiplier on the constraint that nk should not exceed N. Ignoring integer constraints, the first order conditions for welfare maximisation with respect to the size of each city, n, and the number of cities, k, are,

$$\frac{\partial W}{\partial n_k} = q[\alpha(n) + n\alpha'(n)] - tn - Y'(L - nk) - \lambda = 0,$$

(3)

and
These two equations, together with $N = nk$, determine the optimal city size, n^*, number of cities, k^*, and the social value of an increase in the number of jobs λ.\(^6\)

This is illustrated in figure 2a. The horizontal axis is n, the size of a single city, and the vertical is output per worker in the city. The solid concave curve (the same in figures 2a-2c) is output per worker, $qa(n)$. Marginal output, including the externality, is represented by curve $qa(n) + na'(n)$. Equation (3) is illustrated at point A, where the marginal benefit of expanding the city equals the marginal cost of the job, represented by the line giving the commuting cost of the marginal worker (tn), output foregone, Y', and shadow price on jobs, λ. The number of cities is set such that the average value of a job equals its average cost; this is point B, corresponding to equation (4) at which average value $qa(n)$ equals the commuting cost of the average worker, $(tn/2)$, plus output foregone and shadow price λ.\(^7\)

Equilibrium outcomes depend on the extent to which agents are able to coordinate in order to internalise the externalities that are present in this model; we refer to this as the economy’s ‘institutional structure’. The case developed in much of the literature is one in which urban development is undertaken by ‘large developers’.\(^8\) These are agents who are able to capture the entire land rent and control the number of workers in the city. As is well known, a competitive supply of these developers means that the equilibrium is the same as the social optimum. At this equilibrium the land developers pay out the entire city rent as subsidies to workers in the city, ensuring that the ultimate creators of the externality (workers) face the correct incentives and that all externalities are internalised. This case is briefly outlined in the appendix.
Despite the widespread use of this as a modelling approach, it seems hard to imagine that the large developer case is an appropriate description of land markets and city growth in developing countries, requiring, as it does, that a single developer controls city employment by subsidising the optimal number of workers to enter. We therefore investigate two alternatives to the large developer model. In both of these we assume that location decisions are taken by worker-firms who are not also landowners, so do not capture all the rent associated with urban development. The two cases differ however, in the extent to which the worker-firms can coordinate their decisions, so internalising reciprocal externalities in production.

In the first case we look at there is no such coordination, so all agents are small. The return to a job in a city with \(n\) workers is, as in equation (1),

\[
\pi(n) = q_0(n) - m - w(N),
\]

where, since \(q\) is the same in all locations, \(\pi(n, q_i)\) is replaced by \(\pi(n)\). If a mass \(\varepsilon\) of firms sets up in a new location, then the per worker return is

\[
\pi(\varepsilon) = q_0(\varepsilon) - \varepsilon m - w(N).
\]

In equilibrium these returns must be equal, with common value denoted \(\pi'\), so

\[\pi' = \pi(n) = \pi(\varepsilon).\]

Rearranging,

\[
q_0(n') - q_0(\varepsilon) = \pi(n' - \varepsilon), \quad \pi' = q_0(n') - m' - w(N).
\]

The first of these gives equilibrium city size, \(n'\), and the second the associated value of \(\pi'\).

The number of cities comes from the overall level of manufacturing employment, \(k^\varepsilon = N / n^\varepsilon\).

Figure 2b illustrates this small agents case. The gap between the solid curve and the dashed
line is the per worker return, \(\pi(n) = qa(n) - tn - \omega(N) \) and this equals the common value \(\pi' \) at points A and B, respectively a city of size \(n' \) and a city of size \(\epsilon = 0 \). Thus, cities expand upto size \(n' \), beyond which it is profitable to start a new city.

If all agents are small, then \(\epsilon = 0 \) in the equations above. However, a further possibility is that a coalition of producers is able to coordinate decisions to start production in the city, although not able to capture the land rents that are generated by city growth. If a producer coalition of any size \(\epsilon \) can form a new city then it will do so if \(\pi(\epsilon) \) is greater than or equal to the return in an established location, \(\pi(n) \). We denote \(\arg\max \pi(\epsilon) = n' \), and from inspection of (6) see that the first order condition is \(qa'(n') = t \). The equilibrium city size and returns to a job are therefore,

\[
qa'(n) = t, \quad \pi' = qa(n') - tn' - \omega(N).
\]

(8)

To understand this case consider first the vertical line \(n' \) on figure 2b. Entry at this scale would clearly yield returns per job greater than \(\pi' \). Coalitions are able to exploit this, in a way that small agents cannot, and bid away this area of surplus. The outcome is as illustrated in figure 2c, with equilibrium size \(n' \) and profit level \(\pi' \). This is the highest attainable level of \(\pi \) by producers faced with given \(w(N) \) and for whom the whole of commuting costs plus rent \((tn) \) is a cost.

Comparison of equilibrium and optimum city size.

Two market failures are present, creating the differences between cases. The first is the externality in production as each worker-firm affects the productivity of all others; since this is a reciprocal externality it generates a potential coordination failure amongst worker-firms. The second arises as surplus is divided between worker-firms and landlords; this internal
‘terms of trade’ means that agents do not necessarily receive the full marginal benefit of their actions.

These failures can be seen by looking at the size of cities when there is a coalition of producers. It is unambiguously the case that \(n^c < n^e \) (see figures 2b and 2c). The producer coalition overcomes the coordination failure, making it easier to establish new cities and hence causing cities to be smaller than in the small agent case. It is also unambiguously the case that \(n^c < n^o \). Comparing the tangencies at B and C on figures 2a and 2c respectively, the value of extra output per worker, \(qa^c(n) \), is equated to the increase in commuting costs plus rent, \(t \), in the case of the producer coalition, and to the increase in commuting costs, \(t/2 \), in the case of the optimum (this being achieved by subsidising employment if the optimum is decentralised by large developers). Intuitively, the producer coalition fails to capture the additional land rent created by city enlargement, so cities are smaller than optimal.

Both market failures come into play in the comparison of the social optimum and the small agents case. Small agents are not fully rewarded for city enlargement, but also find it difficult to start a new city. Consequently, the comparison of \(n^e \) with \(n^o \) is ambiguous. Some light can be shed by looking at the case where the productivity function is quadratic, given by

\[
a(n) = \alpha + \beta n - \gamma n^2
\]

Equations (3) – (8) then imply

\[
\begin{align*}
n^o &= \frac{[\beta - t/2q]/2\gamma}{}, \\
n^e &= \epsilon + \frac{[\beta - t/q]/\gamma}{}, \\
n^c &= \frac{[\beta - t/q]/2\gamma}{},
\end{align*}
\]

Comparing the optimum with the small agents case, we see that if \(\beta q > 3t/2 \) then \(n^e > n^o \), the case illustrated in the figures. In this case large production externalities, \(\beta \), relative to commuting costs, \(t \), mean that the coordination failure is large relative to land rents. The
large coordination failure gives rise to larger and fewer cities than is socially optimal. However, if the inequality is reversed then small agents may give rise to a structure with too many and too small cities.9

2.3 Urbanisation and the rate of development.

We saw in the preceding subsection that equilibrium and optimal outcomes differ in the size and number of cities they support, given the total number of urban jobs, \(N \). They also differ in the value of job creation, (\(\lambda \) and \(\pi \)). Hence, in a long run equilibrium in which \(N \) is a function of the value of a job, they will differ in the level of urban employment, \(N \), and the wage \(w(N) \). Figures 2a-2c give all the information we need to analyse the value of job creation and hence compare the effects of different institutional structures on long run modern sector employment.

The vertical intercepts marked on figures 2 give the wage plus the value (social, \(\lambda \), or private, \(\pi \)) of an urban job. Suppose that such a job can be created at constant cost, which can be set at zero. In the ‘long run’ it will therefore be the case that \(\lambda = \pi^c = \pi^r = 0 \), as the number of jobs is unconstrained and any rent associated with a job is bid down to zero. The height of the intercept then just measures the equilibrium wage in the economy, \(Y'(L - N) = w(N) \), and hence also indicates the magnitude of total urban employment.

The ranking is unambiguous and, as indicated on figures 2, takes the form \(w(N^o) > w(N^c) > w(N^r) \) and hence \(N^o > N^c > N^r \). The first of these, \(N^o > N^c \), comes from comparison of figures 2a and 2c. In each of these figures optimising behaviour gives a tangency between the marginal productivity gain and the marginal cost of expanding a city. In the case of coordinated producers marginal commuting cost and rent is perceived as a cost of city expansion, whereas in the optimum (and the case of large developers) marginal rent nets out.
This increases the return to establishing a city, and hence the return to urban employment. The ranking of the coordinated producers and small agents cases is also unambiguous, with $N^e > N^f$. This is a direct consequence of the fact that returns to job creation is optimised in the first of these cases, but not in the second. With small agents there is an economic surplus that is not being exploited, because of coordination failure, and this reduces the value of job creation.

The implication of these findings are that different institutions affect not only city sizes, but also the value of creating urban jobs. Failure to internalise the externalities associated with urban development reduces the returns to job creation, so – depending on the mechanism determining N – retarding development and lowering the wage.

2.4 Irreversible decisions and forward looking behaviour.

So far we have assumed that decisions are made on the basis of instantaneous returns, as will be the case if all decisions are costlessly reversible. We now briefly explore the polar opposite case, in which a worker-firm commits to a location in perpetuity.

The number of workers active in a particular city, i, at date z we denote $n_i(z)$. The instantaneous returns to a job in this city are,

$$\pi(n_i(z)) = g_i(n_i(z)) - m_i(z) - w$$

(10)

where, for simplicity, we now assume that the wage is constant. Worker-firms are created at constant rate of v per unit time. Consider a new city born at date 0; it receives workers at rate v until some (endogenously determined) date T, at which point workers instead start to enter the next city. The time path of returns to jobs in the city is given in figure 3. It rises and then
falls as the city grows, benefitting from increasing returns to scale and then running into diminishing returns. Beyond date T the city becomes stationary and $\pi(n(z))$ constant.

With small agents, the equilibrium will have the property that the present value of this path at date 0 is equal to its present value at date T. These are the dates at which worker-firms are indifferent between starting a new city (date 0) or staying in an old and stationary one (date T). The switch date is therefore implicitly defined by the following equation, in which δ is the discount rate;

\[\int_0^T \pi(vz)e^{-\delta z} dz + \frac{\pi(vT)e^{-\delta T}}{\delta} = \frac{\pi(vT)}{\delta}\]

(11)

For $z \in (0, T)$ all new jobs go the city, so $n_i(z) = vz$, while for for $z > T$ the city is stationary, with $n_i(z) = vT$. The left hand side of this equation gives the value of going into a new city at date 0. The right hand side is the value of being the last worker-firm in, beyond which the flow of profits is stationary.

This simple framework gives a couple of insights. The first is that a faster growing economy -- with a higher value of v -- will have smaller cities, other things being equal.10 The reason is that productivity growth in a new city occurs faster, as more new jobs are being created. In figure 3, a higher value v is illustrated by the dashed line, and we see that the benefits of the cluster come sooner, increasing the return to creating a new city, and reducing T. While the effect of city size on growth has been investigated in the literature (eg Henderson 2003) this suggests that causality also runs in the opposite direction, with growth determining city size.

Second, the faster growing economy has the higher return to job creation, as illustrated by the height of $\pi(vT)$ for the different values of v in figure 3. This in turn
suggested that, if the rate of job creation is an increasing function of the returns to creating a job, so \(v = v(\pi), \nu' > 0 \), then there may be multiple equilibria. In a slow growing economy it is relatively difficult to start new cities; this reduces the return to job creation, \(\pi \), reducing \(v \), and confirming the slow growth of the economy. Conversely, fast growing economies can develop an urban structure that offers higher returns to job creation, confirming the rapid growth of the economy.

3. Regions (and international trade)

The models developed above imply that development is spatially concentrated, but the real geographical structure of the models is rather weak, essentially because all the linkages happen within cities. The only interaction between these locations is through markets which are perfectly competitive and perfectly frictionless. To get a richer story of regional disparities interactions between as well as within cities need to be added. One approach to this is to work with a class of models in which the agglomeration force is transport costs on goods which are produced subject to increasing returns to scale (internal to the firm). Increasing returns means that a particular variety of good will typically only be produced in a single place, and transport costs mean that there are gains to producing close to large markets. Agglomeration can arise if there is labour mobility (so a large market creates jobs and the expenditure of these workers makes the market large, Krugman 1991) or input-output linkages, so firms create the market for other firms, (Venables 1996).

A model of this is sketched in the appendix (it draws on Fujita et al 1999), and we do not elaborate it in the text. However, the key to understanding the forces operating in this framework can be understood by looking at the wage equation – the maximum wage that a firm can afford to pay in location \(i \) and break even. This wage, \(w_i \), is implicitly defined by
\(\left\{ G_i^\alpha w_i^\beta q_i \right\} = K \sum_j E_j (G_j / T_j)^\alpha \) \(^{\delta-1} \) \tag{12}

where \(G_i \) is a price index at location \(i \), defined as

\[G_i = \left[\sum_j n_i (p_j T_j)^{1-\eta} \right]^{1/(1-\sigma)} \] \tag{13}

The right hand side of (12) is the ‘market access’ of location \(i \), and is a theoretically well founded version of market potential. It is the sum of expenditures, \(E_j \), in all locations, weighted by a trade cost factor and deflated by a price index. The trade cost factor, \(T_{ij} \), is a measure of the cost faced by country \(i \) producers in selling in market \(j \). The cost of living index, \(G_i \), is defined in (13) as a CES aggregator (with elasticity of substitution \(\sigma \)) of the prices \(p_i \) (trade cost adjusted) of each of the \(n_i \) varieties of goods produced in each location. Cross country variation in \(G_i \) arises as countries close to large sources of supply have lower value of the price index.

The left hand side of (12) is the unit costs of a representative firm at location \(i \). \(\alpha \) and \(\beta \) are input shares, so if labour is the only input to production \(\alpha = 0 \) and \(\beta = 1 \). If intermediates are used then \(\alpha > 0 \) measures their share, and the price of a representative bundle of intermediates is measured by the price index. This price index can also be interpreted as the ‘supplier access’ of location \(i \), taking a low value at locations that are close to sources of supply of manufactured intermediates.

Pulling this together, we see that the maximum wage that a firm can afford to pay and break even is greater the better its market access – the closer it is to sources of demand – and the better its supplier access – lower \(G \) meaning cheaper inputs. This is a force for spatial
clustering of activity, and pulling against this is some dispersion force, such as land rents. What light can this framework shed on spatial inequalities in developing countries?

3.1: 2 region models

Puga (1998), using a framework similar to that outlined above, considered two regions in a closed economy. He showed that if transport costs are high, there must be a ‘balanced’ urban system, with a city in each region. The intuition comes from thinking of regional autarky, in which each region has to produce all goods to meet local demand. However, at lower transport costs consumer demands can be met by imports, so agglomeration forces give rise to a primate-city structure. Manufacturing employment concentrates in a single city, which is able to pay high wages because of its good market access (high value of the right-hand side of (12)). Puga argues that this is one of the reasons why developing countries – urbanising later and with better transport technologies – have a less balanced urban structure than do present developed countries.

Working in a similar framework, Krugman and Livas (1996) show how openness to international trade makes a more balanced city structure more likely. The intuition is that in a more open economy firms are less dependent on local markets and local sources of supply, so within city agglomeration forces are weaker. Given the presence of some dispersion forces, trade can lead to a deconcentration of activity.

3.2: A multi-region model

Further insights can be gained by moving to a multi-region environment. A full version of such a model could be calibrated to a particular country in order to show how the incentives to locate in different regions evolves. Here we continue to operate with something more
stylised, and analyse a linear economy with a well defined mid-point and two end-points. In line with the modeling of section 2, we continue to assume an exogenous growth process; with the total number of manufacturing jobs, N, increasing through time. Where, in such an economy, do they locate?

Industrialisation under autarky: We use numerical methods to explore equilibria of this model, and present results in a series of contour plots. In figure 4a and subsequent figures the vertical axis represents locations in the economy; thus, the top and bottom of the vertical axis are the two ends of the linear economy. The horizontal axis is the share of the labour force that is in manufacturing (N), varying from 1% to 30%. The contour lines on the figures give manufacturing activity levels in each location.

Each point on the horizontal axis corresponds to an exogenously given number of manufacturing firms in the country as a whole, and the model computes the equilibrium location of these firms. Models of this type typically exhibit path dependence, so the process by which more firms are added to the economy needs to be specified. In the results shown we compute an initial equilibrium (at the left hand end of each figure). New firms are then added to all locations, on top of the previous equilibrium pattern. Firms may relocate to the most profitable locations, giving the new equilibrium. The process is repeated, moving to the right along the figure.

The closed economy is illustrated in figure 4a. At low levels of manufacturing development there are two manufacturing regions, located approximately $1/3$ and $2/3$ of the way along the length of the economy. This locational pattern exhibits clustering, because of the demand and cost linkages in the model. However, working against clustering is the presence of demand for manufactures in all locations. The distribution of land across
locations means that income and expenditure on manufactures occurs everywhere, and complete agglomeration of manufacturing in a single central cluster would leave opportunities to profit from entry in peripheral regions. At low levels of overall manufacturing activity the tension between the agglomeration and dispersion forces produces an outcome with two distinct manufacturing regions.

As the economy becomes more developed, so we see that the two manufacturing region structure breaks down and a single region forms, making the spatial distribution of activity more concentrated. Why does this happen? The two region structure becomes unstable because as the economy becomes more industrialised so agglomeration forces become stronger. In particular, as manufacturing grows relative to agriculture the proportion of demand for manufactures coming from the industrial regions becomes greater. This is a force for moving the industrial centres inwards and away from the edges of the economy. However, because of the lock-in effect created by agglomeration, this does not happen smoothly. Instead, the two-centre structure remains an equilibrium up to some point at which there is a bifurcation in the system, and a new structure develops, with a single central industrial region. Further growth of manufacturing increases the number of firms in this region and also (because of the diseconomies to city size that are present in the model) causes some spread of the region to either side of the central location. What we see then, is the closed economy developing a monocentric structure, with a large central manufacturing region.

Industrialisation with two ports. How do things differ in a more open economy? Suppose that the geography of the economy remains symmetric, with one port at each end of the country. Outcomes are illustrated in figure 4b.
At low levels of industrialisation, there is now a single industrial region, located in the centre of the economy. The reason is the presence of foreign competition, making peripheral locations unprofitable. Firms derive natural protection from locating in the centre of the economy. As the number of firms increases, so two things happen. First, central regions of the economy become increasingly well supplied with manufactures, driving down their prices. And second, cost linkages strengthen, reducing costs and making manufacturing better able to compete with the rest of the world production. Both of these forces encourage a dispersion of activity from the central region towards the edges of the economy. Once again, there is a bifurcation point, but now the single cluster of activity divides into two clusters closer to the ports. Despite the lock-in forces due to agglomeration, these centres exhibit some movement towards the edge of the economy, becoming more dependent on export markets as a destination for the growing volume of output. At some point the clusters reach and concentrate at the port locations.

The broad picture is therefore one in which industrial development in the open economy is associated with transition from a small centrally located and inwards-oriented manufacturing sector to its replacement by large export-oriented clusters at the ports -- the opposite of the autarky case. Two qualifications need to be made to this. If the domestic economy were made a good deal larger, then the central cluster devoted largely to supplying the domestic market could also survive, giving three manufacturing regions. And if returns to clustering were made stronger then it is possible that manufacturing would agglomerate at a single port. The gains to agglomeration at just one of the ports would outweigh any diseconomies due to congestion or costs of supplying domestic consumers on the other side of the economy.
Industrialisation with a single port. Finally we look at a case where geography is such that trade can occur only through one end of the economy – a port located at the bottom edge of figure 4c.

Like the previous case, at low levels of industrialisation there is a single industrial cluster. This is now located more than half the length of the economy away from the port, in order to benefit from the natural protection of distance. Industrialisation makes industry more outward oriented and causes movement of this cluster towards the port. This movement means that interior regions of the economy become progressively less well served by manufacturing industry, and the economy reaches a bifurcation point at which a new spatial structure emerges. A new industrial cluster forms in the interior of the economy, oriented towards meeting local demands, and the original cluster is replaced by a cluster of manufacturing in the port city. There is therefore a radical change in internal economic geography, with the original monocentric structure being replaced by two industrial clusters, one export oriented and the other predominantly supplying the domestic market.

Further growth in the number of firms is concentrated in the export oriented cluster, as diminishing returns (in the product market) are encountered less rapidly in export sales than in domestic sales. But as this occurs, so the coastal cluster gains an increasing cost advantage, due to the deepening of cost linkages. This undermines the competitiveness of the internal cluster which – in this example – starts to decline and eventually disappears.

Comparison. These cases are suggestive of the forces at work in determining the changing pattern of industrial location during development. They show how – in open economies – development can be associated with a deconcentration of activity. And in a cross-section of
countries, they are consistent with the Ades and Glaeser (1995) finding that more open economies have less spatially concentrated economic activity.

Of course, the cases given here are examples rather than general findings, and the literature remains short of having findings that are robust enough to be the basis for policy advice. Results are sensitive to details of the geography of countries, including both external trade opportunities and internal infrastructure (the example here holds transport costs constant). Results also depend on the strengths of linkages within industries and – with many manufacturing sectors – the strength of linkages between industries. The model outlined here is static, and while agglomeration tends to lock-in an existing industrial structure, other forces for lock-in, such as sunk costs, are ignored. Thus, while some of the cases outlined above had the property that industrial structure only changed through the birth and death of industrial centres, others had the less satisfactory property of industrial centres moving continuously with parameters of the model. All of this points to the need for further work, both theoretical and empirical, to pin down these effects.

4. Concluding comments

This paper has outlined some simple models that seek to illuminate spatial patterns of development. The models demonstrate how first and second nature geographies interact in determining the location of activity, and they capture some of the stylised facts about the evolution of spatial disparities in developing countries.

One important message from this modeling exercise is that market failures associated with city development can be damaging for real income in both the short-run and the long-run. The market failures create city structures that are less than socially efficient. However, the implications of this depend on the extent to which economic agents – be they producer
coalitions, large developers or city governments – are able to internalise some of the externalities. Given a level of modern sector employment, it is not a priori clear whether cities are larger or smaller than is optimal. More important however, is the fact that these externalities unambiguously reduce the returns to job creation and thereby may retard growth. Low level equilibrium traps are possible; low rates of job creation reduce the incentives to create new cities, this in turn giving a city structure in which returns to job creation are depressed.

The ultimate objective of this line of research must be to inform and improve policy formulation. The rapid pace of urbanisation and of changing economic geographies in developing countries give this task some urgency. If it is accepted that cities are associated with ‘second nature’ increasing returns to scale then it is possible, as we saw in section 3, that there may be radical shifts in countries’ geographies. Policy interventions gain a particular importance as they can shift development onto alternative paths. Understanding the forces shaping countries’ economic geography and the market failures associated with them is a necessary, if very preliminary, step to formulation of such policies.
Appendix 1.

A representative developer maximises the total city rent net of any per worker subsidies (at rate s), so has maximand $R = tmn^2/2 - sn$. He faces the constraint that, to attract workers, earnings net of commuting costs and rent, tn, and inclusive of any subsidy payment, s, must be at least as great as some outside option u, so $qdn(n) - tn + s \geq u$. Maximising this and setting $R = 0$, (free entry of large developers) gives the same outcome as the welfare maximum, providing the outside value of a job is the same in both cases ($v = Y' + \lambda$). This large developer outcome involves paying a subsidy to workers to enter the city, since $R = 0$. This is the ‘Henry George theorem’, saying that all the rents earned in the city must be transferred to the agents who create the externality.

Appendix 2:

A fixed fraction of income is spent on industry, the remainder on agriculture. Demand for a single industrial product produced in location i and sold in j is

$$x_{ij} = \frac{p_i^{-\alpha} T_i^{(1-\alpha)} E_i G_j^{(\alpha-1)}}{w_i^{\beta}}.$$

Price is a fixed park up k over marginal cost, which is a Cobb-Douglas function of wage and price index of intermediates, so $p_j = kG_i^{\alpha}w_i^{\beta}$, $\alpha + \beta = 1$. Firms have a fixed cost, so they break even when total sales (summed over all markets) reach a level \bar{x} that depend just on parameters of technology and the mark up), ie. when

$$\bar{x} = \sum_{d} \sum_{j} x_{ij} = p_i^{-\alpha} \sum_{d} E_j(G_j/T_{ij})^{\alpha-1}.$$

The term $\sum_{d} E_j(G_j/T_{ij})^{\alpha-1}$ is the ‘market access’ of country i. Using the pricing equation in this break even expression gives the wage equation (12) of the text.
Endnotes:

1. See Duranton and Puga (2003) and Rosenthal and Strange (2003) for surveys of theory and empirics respectively. These surveys are both contained in the latest Handbook of Urban and Regional Economics. It is noteworthy that this twenty-one chapter volume does not contain a single chapter devoted to developing country issues.

2. We concentrate on ‘modern sector’ employment; adding other urban activities makes no qualitative difference.

3. The survey of Rosenthal and Strange (2003) suggests that the elasticity of productivity with respect to employment is in the range 0.04-0.11.

4. Equivalently, the city occupies a two-dimensional space and land occupied by each worker (ie, lot size) increases with the square of distance from the centre.

5. This equilibrium is Pareto efficient, since there are no market failures in this benchmark case.

6. Instead of setting up the Lagrangean, the constraint could have been used to substitute out one of the choice variables. However, the value of the Lagrange multiplier turns out to be of interest in the next sub-section.

7. Equations (3) and (4) imply the tangency $qa'(n) = t/2$. λ is endogenous allowing both A and B to occur at the same value of n.

9. This result is in contrast to that in a number of papers in the literature (for example, Anas 1992, Henderson and Becker 2000). These papers assume that in the small agents case the whole of city rents are divided between worker-firms, and entitlement to these rents is forfeit by moving to a new city. The reason why they are forfeit is not always clear. One mechanism would be that a city government collects rents and redistributes them as a lump sum subsidy to inhabitants; this seems implausible, particularly in the developing country context. If this assumption is made then the small-agent case produces relatively large cities; city size in this case is $[\beta - t/2q]/\gamma$.

10. Differentiating equation (11), $dT/d\nu < 0$.

11. Details of the simulations are available from the author on request.

References:

Figure 1a: City growth with first advantage

Figure 1b: Equilibrium with 1st and 2nd nature
Figure 2a: Optimum and large developers

Figure 2b: Small agents
Figure 2c: Producer coalitions

Figure 3: Profit flows
Figure 4a: Location of industry under autarky

Figure 4b: Location of industry with two ports
Figure 4c: Location of industry with one port

Internal locations

Centre

Manufacturing regions

Port

Level of industrialization