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Abstract

This paper develops a real options model of a price-setting cartel under uncertainty to examine
whether market demand volatility facilitates collusion or not. We show that there is a critical level
of market demand (the optimal defection trigger) above which firms find it desirable to defect from
the cartel. We show further that an increase in the underlying market demand uncertainty has two
opposing effects on the optimal defection trigger. First, the increased market demand volatility gives
rise to the usual positive effect on option value that lifts up the optimal defection trigger. Second,
the increased market demand volatility calls for an upward adjustment of the discount rate and thus
creates a negative effect on option value that pushes down the optimal defection trigger. We show
that the negative effect dominates (is dominated by) the positive effect when the underlying market
demand uncertainty is trivial (significant), thereby rendering a U-shaped pattern of the optimal
defection trigger against the market demand volatility.
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1. Introduction

Market demand volatility plays a pivotal role in motivating cartel formations. Prominent

examples include the Organization of Petroleum Exporting Countries and the DeBeers

controlled international diamond cartel. The former is established with the motive to reduce

volatility (Plourde and Watkins, 1998), while the latter is founded so as to prevent volatility

(Kretschmer, 1998).

The purpose of this paper is to examine how market demand volatility affects collusive

behavior in general, and the timing of cartel defections in particular. To this end, we follow
∗Tel.: +852 2859 1044; fax: +852 2548 1152.
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Hassan (2006) to develop a real options model of a price-setting cartel under uncertainty

(Bagwell and Staiger, 1997; Rotemberg and Saloner, 1986). The model features an industry

of symmetric firms that join a cartel and charge the same collusive price in a market

where demand fluctuations are governed by a geometric Brownian motion. Unlike Hassan

(2006), we follow Sarkar (2000) and Wong (2007) to employ the single-factor intertemporal

capital asset pricing model (CAPM) of Merton (1973a) to determine the risk-adjusted rate

of return on each firm’s profit flows. This approach allows us to distinguish changes in

systematic risk from changes in idiosyncratic risk. Since it is reasonable to believe that

the underlying market demand uncertainty is unlikely to be purely idiosyncratic in nature,

such a distinction is needed for a better understanding of the relationship between market

demand volatility and defection timing.

In our model, each firm possesses an option to defect from the cartel, which can be

exercised at any time by cutting its price and paying an irreversible cost. The defector

benefits from capturing the entire market for a limited time period, after which all other

firms retaliate and revert forever to the competitive pricing. The defection option as such

resembles a perpetual American call option with an exercise price set equal to the irreversible

cost and the underlying asset being the incremental gain from defection. The optimal

exercise rule that maximizes the value of the defection option is to defect from the cartel at

the first passage time when the market demand reaches a critical level from below, which

defines the optimal defection trigger. The incentive to defect from the cartel is thus pro-

cyclical. As the market demand grows over time, the cartel becomes increasingly fragile

and eventually breaks down with a concomitant price war.

We show that an increase in the underlying market demand uncertainty affects the

optimal defection trigger in a non-monotonic manner. There are two opposing forces in

effect. First, the increased market demand volatility gives rise to the usual positive effect

on option value (Merton, 1973b) that makes waiting beneficial. This positive effect induces

each firm in the cartel to raise the optimal defection trigger, as is shown in Hassan (2006).

Second, in accord with the CAPM, the increased market demand volatility calls for an

upward adjustment of the discount rate and thus creates a negative effect on option value
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that makes waiting costly. This negative effect induces each firm in the cartel to lower

the optimal defection trigger. When the underlying market demand uncertainty is trivial

(significant), we show that the negative effect dominates (is dominated by) the positive

effect, thereby rendering a U-shaped pattern of the optimal defection trigger against the

market demand volatility. To wit, market demand volatility does not necessarily facilitate

collusion, especially for cartels that operate in relatively stable markets.

The rest of this paper is organized as follows. The next section delineates the model and

characterizes the optimal defection trigger. Section 3 examines how the optimal defection

trigger responds to an increase in the underlying market demand uncertainty. The final

section concludes.

2. The model

Consider an industry with N symmetric firms that produce a single homogeneous good

in continuous time, where N ≥ 2 and time is indexed by t ∈ [0,∞). At any time t, the

firms compete in prices and produce at the same constant marginal cost, C ≥ 0, under

no capacity constraints. The market demand for the good is given by X(t)D(P ), where

X(t) is the contemporary mass of consumers, D(P ) is the identical demand function for

each consumer with D′(P ) < 0, and P is the lowest price charged by the firms. If all the

firms set the same price, P ≥ C, each of them will supply X(t)D(P )/N to the market

and earn the profit, X(t)Π(P )/N , where Π(P ) = (P − C)D(P ). It is well-known that

the unique Bertrand-Nash equilibrium in the one-shot pricing-stage game has all the firms

setting P = C and thereby earning zero profit.

We introduce uncertainty to the market demand by assuming that X(t) evolves over

time according to the following geometric Brownian motion:

dX(t) = αX(t)dt + σX(t)dZ(t), (1)
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where dZ(t) is the increment of a standard Wiener process, and α > 0 and σ > 0 are

the constant drift rate (expected growth rate) and volatility (standard derivation) per unit

time, respectively. Eq. (1) implies that the current value of the state variable is known,

but the future values are log-normally distributed with a variance that grows linearly with

the time horizon. We denote X0 > 0 as the initial mass of consumers at t = 0 and r > 0 as

the constant riskless rate of interest per unit time.

We assume that the stochastic fluctuations of X(t) are spanned by assets traded in

complete financial markets, where risk-adjusted rates of return on financial assets are de-

termined by the single-factor intertemporal capital asset pricing model (CAPM) of Merton

(1973a). Let Y (t) be the price of an asset or portfolio of assets perfectly correlated with

X(t), and denote by ρ > 0 as the correlation of Y (t) with the market portfolio. Then, Y (t)

evolves over time according to the following geometric Brownian motion:

dY (t) = (r + λρσ)Y (t)dt + σY (t)dZ(t), (2)

where λ > 0 is the constant market price of risk per unit time, and r + λρσ is the risk-

adjusted rate of return on Y (t) according to the CAPM. Let δ = r + λρσ − α > 0 be the

return shortfall or convenience yield on X(t).

Since the firms interact among themselves repeatedly in an infinite horizon, the Folk

Theorem applies in that the firms can form a cartel to sustain collusive outcomes that

strictly dominate the one-shot Bertrand-Nash equilibrium outcome, even when binding

contracts cannot be signed. Denote Pm as the unique joint profit-maximizing price, i.e.,

Pm maximizes Π(P ). Following Hassan (2006), we consider the simplest mechanism that

sustains collusive pricing at Pm from t = 0 to some (uncertain) defection time in the future,

using trigger strategies as in Friedman (1971). Specifically, at t = 0, each firm agrees to

maintain the collusive price, Pm, for as long as all others follow suit. If a firm deviates by

cutting its price by an arbitrarily small amount below Pm, the defector is able to capture

the entire market and earn approximately X(t)Π(Pm) for a finite time period, T > 0. The

other firms then retaliate and revert forever to the one-shot Bertrand-Nash equilibrium,

thereby inducing the defector to do the same. T as such measures the retaliation lag. The



K.P. Wong / Economic Modelling 5

defector has to incur an irreversible cost, I > 0, at the instant when the defection from the

cartel occurs.

At any time t, the market value of a firm if all the firms stay in the cartel is given by

Vc[X(t)] = E
[ ∫ ∞

t
e−(r+λρσ)(τ−t) X(τ)Π(Pm)

N
dτ

∣∣∣∣X(t)
]

=
X(t)Π(Pm)

δN
, (3)

where E(·) is the expectation operator and δ = r + λρσ − α > 0. On the other hand, if the

firm deviates at that time, then during the period from time t to t+T , the defector earns a

defection rent equal to the monopoly profit. At time t+T , the other firms retaliate and the

cartel breaks down, with consequent competitive pricing at the marginal cost thereafter.

Hence, the market value of the defector at time t is given by

Vd[X(t)] = E
[ ∫ T

t
e−(r+λρσ)(τ−t)X(τ)Π(Pm) dτ

∣∣∣∣X(t)
]

=
(1− e−δT )X(t)Π(Pm)

δ
. (4)

The incremental gain from defection, in expected present value terms at time t, is given by

G[X(t)] = Vd[X(t)]− Vc[X(t)] =
(

1 − e−δT − 1
N

)
X(t)Π(Pm)

δ
, (5)

where the second equality follows from Eqs. (3) and (4). It is evident from Eq. (5) that a

necessary condition for defection to occur is that 1 − e−δT − 1/N > 0 or, equivalently,

T >
1
δ

ln
(

N

N − 1

)
. (6)

Condition (6) says that the retaliation lag during which the defector receives the monopoly

profit has to be long enough for defection to be potentially attractive, which is assumed to

hold throughout the paper. Inspection of Eq. (5) also reveals that the incremental gain

from defection increases with the market demand gauged by X(t), thereby rendering pro-

cyclical incentives to defect. As the market demand keeps on growing, the cartel becomes

increasingly fragile and eventually breaks down with a concomitant price war.

Let F (X0) be the value of the option to defect from the cartel (hereafter referred to as

the defection option), evaluated at t = 0. The defection option can be viewed as a perpetual
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American call option with an exercise price set equal to the irreversible cost, I , where the

underlying asset is the incremental gain from defection, G[X(t)]. Thus, we have

F (X0) = max
t≥0

E
{

e−(r+λρσ)t max{G[X(t)]− I, 0}
∣∣∣∣X(0) = X0

}
. (7)

To solve the optimal stopping time on the right-hand side of Eq. (7) is tantamount to solving

the critical mass of consumers, X∗, that triggers the exercise of the defection option. Using

the standard contingent-claim approach (see Appendix A), the value of the defection option

at time t, F [X(t)], must satisfy the following differential equation:

1
2
σ2X(t)2F ′′[X(t)] + (r − δ)X(t)F ′[X(t)]− rF [X(t)] = 0, (8)

for all X(t) ∈ [0, X∗], subject to the following three boundary conditions:

F (0) = 0, (9)

F (X∗) = G(X∗) − I, (10)

and

F ′(X∗) = G′(X∗). (11)

The first boundary condition, Eq. (9), simply reflects the fact that zero is an absorbing

barrier for the geometric Brownian motion in Eq. (1). The second boundary condition, Eq.

(10), is the value-matching condition that ensures the value of the defection option equal

to the incremental gain from defection net of the irreversible cost at the instant when the

option is exercised. The third boundary condition, Eq. (11), is the smooth-pasting or high-

contact condition such that the optimal defection trigger, X∗, is the one that maximizes

the value of the defection option.

Eq. (8) is a second-order linear homogeneous differential equation. The general solution

to Eq. (8) takes the form of a power function: AXβ, where A is a constant to be determined

and β is a solution to the following quadratic equation:

1
2
σ2β(β − 1) + (r − δ)β − r = 0. (12)
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There are two roots for Eq. (12), one positive and the other negative. Eq. (9) implies that

the coefficient for the negative β must be zero. Thus, we can ignore the negative solution

for β so that

β =
1
2
− r − δ

σ2
+

√(
1
2
− r − δ

σ2

)2

+
2r

σ2
. (13)

Note that Eq. (12) can be written as

(β − 1)
(

1
2
σ2β + r

)
= δβ. (14)

Since δ > 0, it is evident from Eq. (14) that β > 1.

Using F (X) = AXβ and Eq. (5), we solve Eqs. (10) and (11) to yield

X∗ =
(

β

β − 1

)(
1 − e−δT − 1

N

)−1 δI

Π(Pm)
, (15)

and A = [G(X∗) − I ]/X∗β. Thus, the value of the defection option at t = 0 is given by

F (X0) =





[G(X∗) − I ](X0/X∗)β if X0 < X∗,

G(X0) − I if X0 ≥ X∗,
(16)

where (X0/X∗)β is the stochastic discount factor that accounts for both the timing and the

probability of one dollar received at the first instant when the optimal defection trigger, X∗,

is reached from below. To ensure some positive value to the defection option, and thus the

cartel is sustainable for at least a finite time period, in the sequel we assume that X0 < X∗.

3. Market demand volatility as a collusion facilitating factor

In this section, we study how the market demand volatility affects the optimal defection

trigger, X∗. We follow Sarkar (2000) and Wong (2007) to model an increase in the under-

lying market demand uncertainty as an increase in σ, taking all other parameters, r, λ, ρ,

and α, as constants. In other words, the increase in σ contains a systematic risk component
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that affects the convenience yield, δ. In accord with the CAPM, we have ∂δ/∂σ = λρ > 0.

In contrast, Hassan (2006) considers another type of increased uncertainty commonly used

in the extant literature (see McDonald and Siegel, 1986; Dixit and Pindyck, 1994), wherein

the convenience yield is held fixed when σ varies, i.e., ∂δ/∂σ = 0. In his case, the increase

in σ has only an idiosyncratic risk component. Since it is reasonable to believe that an

increase in the underlying market demand uncertainty is unlikely to be purely idiosyncratic

in nature, in this regard our approach offers a better way to model such a change.

Differentiating Eq. (12) with respect to σ yields

dβ

dσ
=

β

σ2(β − 1/2) + r − δ

[
dδ

dσ
− σ(β − 1)

]
=

2β2

σ2β2 + 2r

[
dδ

dσ
− σ(β − 1)

]
, (17)

where the second equality follows from Eq. (12). Using Eq. (14), we can write Eq. (15) as

X∗ =
(

1
2
σ2β + r

)(
1 − e−δT − 1

N

)−1 I

Π(Pm)
. (18)

Differentiating Eq. (18) with respect to σ yields

dX∗

dσ
= X∗

[(
1
2
σ2β + r

)−1(
σβ +

1
2
σ2 dβ

dσ

)
−

(
1 − e−δT − 1

N

)−1

e−δT T
dδ

dσ

]

= X∗
{

2σβ

σ2β2 + 2r
+

[
2σ2β2

(σ2β + 2r)(σ2β2 + 2r)
−

(
1 − e−δT − 1

N

)−1

e−δT T

]
dδ

dσ

}
, (19)

where the second equality follows from Eq. (17).

Hassan (2006) considers the case that dδ/dσ = 0. Inspection of Eq. (19) immediately

reveals that dX∗/dσ > 0 in his case. This follows from the fact that an increase in σ

enhances the value of the defection option (Merton, 1973b). Each firm as such is induced

to raise the optimal threshold mass of consumers, X∗, at which the defection option is

exercised, thereby rendering market demand volatility as a collusion facilitating factor.

We consider the alternative case that dδ/dσ = λρ > 0. As is shown in the following

proposition, X∗ is no longer a strictly increasing function of σ in our case.
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Proposition 1. Given that an increase in the underlying market demand uncertainty

contains a systematic risk component, i.e., dδ/dσ = λρ > 0, if the following condition

holds:

σ̄ + λρ +
√

2r

σ̄
√

2r + 2r
>

[
1 − e−(r+λρσ̄−α)T − 1

N

]−1

e−(r+λρσ̄−α)T Tλρ, (20)

where σ̄ =
√

2α + λ2ρ2 − λρ, there exists a unique point, σ∗ ∈ (0, σ̄), that solves

dX∗

dσ

∣∣∣∣
σ=σ∗

= 0, (21)

such that the optimal defection trigger, X∗, exhibits a U-shaped pattern against the market

demand volatility, σ, with a unique minimum attained at σ∗ for all σ ∈ [0, σ̄]. Otherwise,

X∗ is strictly decreasing in σ for all σ ∈ [0, σ̄).

Proof. See Appendix B. 2

Condition (20) holds for T reasonably large. To see this, consider the following param-

eter values taken from Sarkar (2000) and Wong (2007): α = 1%, r = 4%, λ = 0.4, and

ρ = 0.7. In this case, we have σ̄ = 3.37%. If there are N = 10 firms in the industry,

condition (6) requires that T > 2.67 and condition (20) is satisfied for all T > 15.19. If

there are N = 100 firms in the industry, condition (6) requires that T > 0.25 and condition

(20) is satisfied for all T > 5.70.

An immediate implication of Proposition 1 is that market demand volatility does not

necessarily facilitate collusion in general, and tends to destroy cartels in relatively stable

markets in particular. The intuition of Proposition 1 is as follows. In our case that an

increase in the underlying market demand uncertainty contains a systematic risk component,

the risk-adjusted rate of return on the incremental gain from defection has to increase

according to the CAPM. Since the investment cost remains constant at I , the increase

in the discount rate makes defection from the cartel less attractive. Each firm as such

is induced to lower the optimal threshold mass of consumers, X∗, at which the defection

option is exercised, ceteris paribus. When the market demand volatility is small, it is
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evident from Eq. (19) that the positive effect due to the enhanced option value is at best

second order. The negative effect due to the increased discount rate, on the other hand, is

always first order because the risk-adjusted rate of return is linear in σ in accord with the

CAPM. When the market demand volatility becomes greater, condition (20) ensures that

the positive effect due to the enhanced option value dominates the negative effect due to

the increased discount rate. Such a dominance is driven by the fact that the significance

of the positive effect grows with σ, while that of the negative effect declines with σ. This

explains why X∗ exhibits a U-shaped patten against σ with the unique minimum attained

at σ∗.

4. Conclusion

This paper has examined how market demand volatility affects collusive behavior in

general, and the timing of cartel defections in particular. We have developed a real options

model of a price-setting cartel under uncertainty along the lines of Hassan (2006), with a

caveat that the risk-adjusted rate of return on each firm’s profit flows is determined by the

single-factor intertemporal capital asset pricing model (CAPM) of Merton (1973a). Each

firm in the model possesses an option to defect from the cartel, which can be exercised

at any time by cutting its price and paying an irreversible cost. The defection option as

such resembles a perpetual American call option with an exercise price set equal to the

irreversible cost, where the underlying asset is the incremental gain from defection.

We have shown that the optimal exercise rule that maximizes the value of the defection

option is to defect from the cartel at the first passage time when the market demand

reaches a critical level (the optimal defection trigger) from below, thereby rendering pro-

cyclical incentives to defect from the cartel. We have shown further that an increase in the

underlying market demand uncertainty creates two opposing effects on the optimal defection

trigger: the usual positive effect on option value (Merton, 1973b) and the negative effect on

option value due to the upward adjusted discount rate in accord with the CAPM. We have
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shown that the negative effect dominates (is dominated by) the positive effect when the

market demand volatility is small (large). The relationship between the optimal defection

trigger and the market demand volatility thus exhibits a U-shaped pattern, thereby implying

that market demand volatility does not necessarily facilitate collusion.
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Appendix A. Derivation of Eq. (8)

Consider the following dynamic portfolio at time t: (i) Hold the defection option that is

worth F [X(t)], and (ii) go short n units of the asset or portfolio of assets that tracks X(t).

The value of this portfolio is F [X(t)]− nY (t). The total return from holding the portfolio

over a short time interval, dt, is given by

dF [X(t)]− ndY (t)

= F ′[X(t)]dX(t)+
1
2
F ′′[X(t)][dX(t)]2 − n(r + λρσ)Y (t)dt − nσY (t)dZ(t)

=
{

αX(t)F ′[X(t)] +
1
2
σ2X(t)2F ′′[X(t)]− n(r + λρσ)Y (t)

}
dt

+{σX(t)F ′[X(t)]− nσY (t)}dZ(t), (A.1)

where the first equality follows from Ito’s Lemma and Eq. (2), and the second equality
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follows from Eq. (1) and [dX(t)]2 = σ2X(t)2dt. Substituting n = X(t)F ′[X(t)]/Y (t) into

Eq. (A.1) yields

dF [X(t)]− X(t)F ′[X(t)]
Y (t)

dY (t) =
{

1
2
σ2X(t)2F ′′[X(t)]− δX(t)F ′[X(t)]

}
dt, (A.2)

where δ = r + λρσ − α. Inspection of Eq. (A.2) reveals that the portfolio is riskless and

thus we must have

{
1
2
σ2X(t)2F ′′[X(t)]− δX(t)F ′[X(t)]

}
dt = r{F [X(t)]− X(t)F ′[X(t)]}dt, (A.3)

to rule out arbitrage opportunities. Eliminating dt on both sides of Eq. (A.3) and rear-

ranging terms yields Eq. (8).

Appendix B. Proof of Proposition 1

Using the fact that dδ/dσ = λρ > 0, we can write the expression inside the curly

brackets on the right-hand side of Eq. (19) as

M(σ) =
2σβ

σ2β2 + 2r

(
1 +

λρσβ

σ2β + 2r

)

−
[
1 − e−(r+λρσ−α)T − 1

N

]−1

e−(r+λρσ−α)T Tλρ. (A.4)

Differentiating Eq. (A.4) with respect to σ yields

M ′(σ) =
2(2r − σ2β2)
(σ2β2 + 2r)2

(
β + σ

dβ

dσ

)(
1 +

λρσβ

σ2β + 2r

)

+
4rλρσβ

(σ2β + 2r)2(σ2β2 + 2r)

(
β − σ2β2

2r
+ σ

dβ

dσ

)

+
[
1 − e−(r+λρσ−α)T − 1

N

]−2(N − 1
N

)
e−(r+λρσ−α)T T 2λ2ρ2. (A.5)



K.P. Wong / Economic Modelling 13

Rearranging terms of Eq. (12) yields

2r − σ2β2 = (2α − 2λρσ − σ2)β. (A.6)

For all σ ∈ [0, σ̄], we have 2α ≥ 2λρσ+σ2 so that 2α > σ2 and, from Eq. (A.6), 2r ≥ σ2β2,

where the equality holds only at σ = σ̄. Using Eqs. (17) and (A.6), we have

β + σ
dβ

dσ
=

2rβ + 2(λρ + σ)σβ2 − σ2β3

σ2β2 + 2r
=

(σ2 + 2α)β2

σ2β2 + 2r
. (A.7)

Substituting Eq. (A.7) into Eq. (A.5) yields

M ′(σ) =
2β2(2r − σ2β2)(σ2 + 2α)(σ2β + 2r + λρσ)

(σ2β + 2r)(σ2β2 + 2r)3
+

2λρσβ3(4rα − σ4β2)
(σ2β + 2r)2(σ2β2 + 2r)2

+
[
1 − e−(r+λρσ−α)T − 1

N

]−2(N − 1
N

)
e−(r+λρσ−α)T T 2λ2ρ2. (A.8)

For all σ ∈ [0, σ̄], we have 2r ≥ σ2β2 and 2α > σ2 so that 4rα > σ4β2 and, from Eq. (A.8),

M ′(σ) > 0. From Eq. (A.4), we have

M(0) = −
[
1− e−(r−α)T − 1

N

]−2

e−(r−α)TTλρ < 0. (A.9)

Condition (20), on the other hand, ensures that M(σ̄) > 0 since σ̄β =
√

2r. Hence, we

conclude that there exists a unique point, σ∗ ∈ (0, σ̄), such that M(σ∗) = 0, i.e., σ∗ solves

Eq. (21). The desired results then follow from the fact that dX∗/dσ < 0 for all σ ∈ [0, σ∗)

and dX∗/dσ > 0 for all σ ∈ (σ∗, σ̄]. If condition (20) is violated, we have M(σ) < 0 and

thus dX∗/dσ < 0 for all σ ∈ [0, σ̄).
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