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Liquidity, Futures Price Dynamics, and Risk Management

Abstract

This paper examines the optimal design of a futures hedge program by a competitive firm under
output price uncertainty. Due to a capital constraint and the marking-to-market procedure of futures
contracts, the firm faces endogenous liquidity risk. If the futures prices are sufficiently positively
correlated, we show that the capital constraint is non-binding in that the optimal amount of capital
earmarked to the futures hedge program is less than the firm’s capital endowment. Otherwise, we
show that the capital constraint becomes binding in that the firm optimally puts aside all of its
capital stock for the futures hedge program. In the case of non-binding capital constraint, we show
that the firm’s optimal futures position is likely to be an over-hedge for reasonable preferences. In
the case of binding capital constraint, the firm’s optimal futures position is an under-hedge or an
over-hedge, depending on whether the autocorrelation coefficient of the futures price dynamics is
below or above a critical positive value, respectively.

JEL classification: D21; D81; G13

Keywords: Endogenous liquidation; Futures price dynamics; Marking to market; Prudence

1. Introduction

According to the Committee on Payment and Settlement Systems (1998), firms should

take liquidity risk seriously when devising their risk management strategies. Failure to do

so is likely to result in fatal consequences for even technically solvent firms. An apposite

example of this sort is the disaster at Metallgesellschaft A. G. (MG), the 14th largest

industrial firm in Germany.1

In 1993, MG Refining and Marketing, Inc. (MGRM), the U.S. subsidiary of MG, offered

long-term contracts for oil and refined oil products that allow its customers to lock in fixed
1Another example is the debacle of Long-Term Capital Management (Jorion, 2001).
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prices up to 10 years into the future. To hedge its exposure to the oil price risk, MGRM

took on large positions in energy derivatives, primarily in oil futures. When oil prices

plummeted in December 1993, MGRM was unable to meet its variation margin payments

due to the denial of credit from its banks.2 This debacle resulted in a $2.4 billion rescue

package coupled with a premature liquidation of its futures positions en masse so as to keep

MG from going bankrupt (Culp and Miller, 1995).

While basis risk in oil futures would certainly imply that MG’s hedge did not successfully

lock in value (Ross, 1997; Hilliard, 1999; Neuberger, 1999), Mello and Parsons (1995, 2000)

identify the funding requirements of MG’s hedging strategy as one of the central causes of

the problem. Indeed, Mello and Parsons (1995, 2000) show that a perfect hedge does not

create its own liquidity, and that the inability to fund a hedging strategy to its end is a

serious defect in the design of many popular hedging strategies. In light of these findings,

the purpose of this paper is to examine whether there is any role of liquidity constraints

in the optimal design of a futures hedge program that allows an endogenously determined

provision for terminating the program.

This paper develops a two-period model of the competitive firm under output price

uncertainty (Sandmo, 1971). Specifically, the firm produces a single commodity that is

sold at the end of the planning horizon. Since the subsequent spot output price is not

known ex ante, the firm trades unbiased futures contracts for hedging purposes. All of the

unbiased futures contracts are marked to market in that they require cash settlements of

gains and losses at the end of each period. The futures price dynamics is assumed to follow

a first-order autoregression that includes a random walk as a special case.3

The firm devises its futures hedge program by choosing a futures position and an amount
2Culp and Hanke (1994) report that “four major European banks called in their outstanding loans to

MGRM when its problems became public in December 1993. Those loans, which the banks had previously
rolled-over each month, denied MGRM much needed cash to finance its variation margin payments and
exacerbated its liquidity problems.”

3Using a unique data set of 280 different commodities, Andersson (2007) does not reject a unit root
(random walk) except for some 15% of the commodity price series. He attributes these findings to the low
power of statistical unit root tests. As an alternative to statistical tests, he proposes using the hedging
error in option prices as an economic test of mean reversion. For the 162 series, the mean reverting process
provides a mean absolute error of 3.8% compared to 7.5% for the geometric Brownian motion (random walk).
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of capital earmarked for the program. According to its futures hedge program, the firm

commits to premature liquidation of its futures position on which the interim loss incurred

exhausts the earmarked capital. The capital commitment as such constitutes an endogenous

liquidity constraint, where the choice of the former dictates the severity of the latter. The

firm is subject to a capital constraint in that the earmarked capital cannot exceed the firm’s

capital endowment. We show that the liquidity risk arising from the capital constraint and

the marking-to-market procedure of the futures contracts truncates the firm’s payoff profile,

which plays a pivotal role in shaping the optimal design of the firm’s futures hedge program.

Given that the futures prices are autocorrelated, the resulting intertemporal linkage is likely

to induce the firm to consider a provision for premature termination of its futures hedge

program.

In the benchmark case that the firm is not liquidity constrained, the celebrated separa-

tion and full-hedging theorems of Danthine (1978), Holthausen (1979), and Feder, Just, and

Schmitz (1980) apply. The separation theorem states that the firm’s production decision

depends neither on its risk attitude nor on the underlying output price uncertainty. The

full-hedging theorem states that the firm should completely eliminate its output price risk

exposure by adopting a full-hedge via the unbiased futures contracts.

When the choice of the capital commitment, i.e., the severity of the liquidity constraint,

is endogenously determined by the firm, we show that the firm voluntarily chooses to limit

the amount of capital earmarked for its futures hedge program should the futures prices

be positively autocorrelated. The autoregressive specification of the futures price dynamics

renders predictability, of which the firm has incentives to take advantage. Specifically, a

positive autoregression implies that a loss from a futures position tends to be followed

by another loss from the same position. The firm as such finds premature liquidation

of its futures position to be ex-post optimal. The amount of capital earmarked to the

futures hedge program is thus chosen to strike a balance between ex-ante and ex-post

efficient risk sharing. If the futures prices are sufficiently positively correlated, we show

that the capital constraint is non-binding in that the optimal capital commitment is less

than the firm’s capital endowment. Otherwise, we show that the capital constraint becomes
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binding in that the firm optimally puts aside all of its capital stock for the futures hedge

program. In the case of non-binding capital constraint, we show that the firm’s optimal

futures position is likely to be an over-hedge for reasonable preferences. In the case of

binding capital constraint, the firm’s optimal futures position is an under-hedge or an over-

hedge, depending on whether the autocorrelation coefficient of the futures price dynamics

is below or above a critical positive value, respectively. Finally, if the futures prices are

uncorrelated or negatively autocorrelated, premature liquidation of the futures position is

never ex-post optimal, thereby making the firm prefer not to be liquidity constrained and

the separation and full-hedging theorems follow.

In a similar model in which the competitive firm faces an exogenous liquidity constraint

and the futures price dynamics follows a random walk, Lien (2003) shows the optimality

of an under-hedge. Wong (2004a, 2004b) and Wong and Xu (2006) further show that the

liquidity constrained firm optimally cuts down its production. These results are in line

with those of Paroush and Wolf (1989) in that the presence of residual unhedgeable risk

would adversely affect the hedging and production decisions of the competitive firm under

output price uncertainty. In contrast, we follow Wong (2008) to allow not only an endoge-

nous liquidity constraint but also a first-order autocorrelation of the futures price dynamics.

The latter renders the futures prices predictability of which the firm has incentives to take

advantage. This explains why an over-hedge, coupled with a commitment to premature liq-

uidation, is optimal when the futures prices are positively autocorrelated. When the futures

prices are uncorrelated or negatively autocorrelated, premature liquidation is suboptimal

and thus the firm adopts a full-hedge. In the case of an exogenously liquidity constraint,

premature liquidation is inevitable so that an under-hedge is called for to limit the poten-

tial loss due to a lack of liquidity. The disparate results thus identify factors such as the

predictability of futures prices, the severity of liquidity constraints, and the attitude of risk

preferences to be crucial for the optimal design of a futures hedge program.

The rest of this paper is organized as follows. Section 2 develops a two-period model

of the optimal design of a futures hedge program by a competitive firm under output price

uncertainty. Due to a capital constraint and the marking-to-market procedure of futures
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contracts, the firm faces endogenous liquidity risk. Section 3 examines a benchmark case in

which the firm is not subject to any liquidity constraints. Section 4 derives the firm’s optimal

futures hedge program when the firm is endowed with an infinite amount of capital. Section

5 goes on to derive the firm’s optimal futures hedge program when the firm is endowed with

a finite amount of capital. Section 6 constructs numerical examples to shed light on the

theoretical findings. The final section concludes.

2. The model

Consider a dynamic variant model of the competitive firm under output price uncertainty

à la Sandmo (1971). There are two periods with three dates, indexed by t = 0, 1, and 2.

Interest rates in both periods are known with certainty at t = 0. To simplify notation, we

suppress the known interest factors by compounding all cash flows to their futures values

at t = 2.

To begin, the firm is endowed with a fixed amount of capital, k > 0. The firm produces

a single commodity according to a deterministic cost function, c(q), where q ≥ 0 is the level

of output chosen by the firm at t = 0. We assume that c(q) satisfies that c(0) = c′(0) = 0,

and that c′(q) > 0 and c′′(q) > 0 for all q > 0. The firm sells its entire output, q, at t = 2

at the then prevailing spot price, p2, that is not known ex ante.

To hedge its exposure to the output price uncertainty, the firm can trade infinitely

divisible futures contracts at t = 0. Each of the futures contracts calls for delivery of one

unit of output at t = 2, and is marked to market at t = 1. Let ft be the futures price at

date t (t = 0, 1, and 2). While the initial futures price, f0, is predetermined at t = 0, the

other futures prices, f1 and f2, are regarded as positive random variables. In the absence

of basis risk, the futures price at t = 2 must be set equal to the spot price at that time by

convergence. Thus, we have f2 = p2.

We model the futures price dynamics by assuming that ft = ft−1 + εt for t = 1 and 2,
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where ε2 = ρε1 +δ, ρ is a scalar, and ε1 and δ are two random variables independent of each

other. To focus on the firm’s hedging motive, vis-à-vis its speculative motive, we further

assume that ε1 and δ have means of zero so that the initial futures price, f0, is unbiased

and set equal to the unconditional expected value of the random spot price at t = 2,

p2. The futures price dynamics as such is a first-order positive or negative autoregression,

depending on whether ρ is positive or negative, respectively. If ρ = 0, the futures price

dynamics becomes a random walk.

We delineate the firm’s futures hedge program by a pair, (h, k), where h > 0 is the

number of the futures contracts sold by the firm at t = 0, and k ∈ [0, k] is the fixed

amount of capital earmarked for the futures hedge program.4 Due to marking to market

at t = 1, the firm suffers a loss (or enjoys a gain if negative) of (f1 − f0)h at t = 1 from

its short futures position, h. The firm’s futures hedge program, (h, k), dictates the firm

to prematurely liquidate its short futures position at t = 1 if the interim loss exhausts the

earmarked capital, i.e., if (f1 − f0)h > k. Thus, the firm’s random profit at t = 2 in this

liquidation case, π`, is given by

π` = p2q + (f0 − f1)h − c(q) = f0q + ε1[(1 + ρ)q − h] + δq − c(q), (1)

where the second equality follows from the assumed futures price dynamics. On the other

hand, if (f1−f0)h ≤ k, the firm holds its short futures position until t = 2. Thus, the firm’s

random profit at t = 2 in this continuation case, πc, is given by

πc = p2q + (f0 − f2)h − c(q) = f0q + [(1 + ρ)ε1 + δ](q − h) − c(q), (2)

where the second equality follows from the assumed futures price dynamics.

The firm is risk averse and possesses a von Neumann-Morgenstern utility function,

u(π), defined over its profit at t = 2, π, where u′(π) > 0 and u′′(π) < 0.5 Anticipating the
4In the appendix, we show that it is never optimal for the firm to opt for a long futures position, i.e.,

h < 0. Hence, we can restrict our attention to the case that the firm always chooses a short futures position.
5The risk-averse behavior of the firm can be motivated by managerial risk aversion (Stulz, 1984), corpo-

rate taxes (Smith and Stulz, 1985), costs of financial distress (Smith and Stulz, 1985), and capital market
imperfections (Stulz, 1990; Froot, Scharfstein, and Stein, 1993). See Tufano (1996) for evidence that man-
agerial risk aversion is a rationale for corporate risk management in the gold mining industry.
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endogenous liquidity constraint at t = 1, the firm chooses its output level, q ≥ 0, and devises

its futures hedge program, (h, k), so as to maximize the expected utility of its random profit

at t = 2:

max
q≥0,h>0,0≤k≤k

∫ k/h

−∞
E[u(πc)]g(ε1) dε1 +

∫ ∞

k/h
E[u(π`)]g(ε1) dε1, (3)

where E(·) is the expectation operator with respect to the probability density function of

δ, g(ε1) is the probability density function of ε1, and π` and πc are defined in Eqs. (1) and

(2), respectively. We refer to the short futures position, h, as an under-hedge, a full-hedge,

or an over-hedge if h is less than, equal to, or greater than q, respectively.

The Kuhn-Tucker conditions for program (3) are given by6

∫ k∗/h∗

−∞
E{u′(π∗

c )[f0 + (1 + ρ)ε1 + δ − c′(q∗)]}g(ε1) dε1

+
∫ ∞

k∗/h∗
E{u′(π∗

` )[f0 + (1 + ρ)ε1 + δ − c′(q∗)]}g(ε1) dε1 = 0, (4)

−
∫ k∗/h∗

−∞
E{u′(π∗

c )[(1 + ρ)ε1 + δ]}g(ε1) dε1 −
∫ ∞

k∗/h∗
E[u′(π∗

` )]ε1g(ε1) dε1

−E[u(π∗
c0) − u(π∗

`0)]g(k∗/h∗)k∗/h∗2 = 0, (5)

E[u(π∗
c0) − u(π∗

`0)]g(k∗/h∗)/h∗ − λ∗ ≤ 0, (6)

and

k − k∗ ≥ 0, (7)

where conditions (5) and (6) follow from using Leibniz’s rule, λ∗ is the Lagrange multiplier,

π∗
c0 = f0q

∗+[(1+ρ)k∗/h∗+δ](q∗−h∗)−c(q∗), π∗
`0 = [f0+(1+ρ)k∗/h∗+δ]q∗−k∗−c(q∗), and

an asterisk (∗) signifies an optimal level. Should k∗ > 0, condition (6) holds with equality.

Likewise, should λ∗ > 0, condition (7) holds with equality.
6The second-order conditions for program (3) are satisfied given risk aversion and the strictly convexity

of c(q).
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3. Benchmark case with no liquidity constraints

As a benchmark, we consider in this section the case that the firm is not liquidity

constrained, which is tantamount to setting k = ∞. In this benchmark case, Program (3)

becomes

max
q≥0,h>0

∫ ∞

−∞
E[u(πc)]g(ε1) dε1. (8)

The first-order conditions for program (8) are given by

∫ ∞

−∞
E{u′(π0

c )[f0 + (1 + ρ)ε1 + δ − c′(q0)]}g(ε1) dε1 = 0, (9)

and

−
∫ ∞

−∞
E{u′(π0

c )[(1 + ρ)ε1 + δ]}g(ε1) dε1 = 0, (10)

where a nought (0) indicates an optimal level.

Solving Eqs. (9) and (10) yields the following proposition, where all proofs of proposi-

tions are given in Appendix B.

Proposition 1. Given that the competitive firm is not liquidity constrained, i.e., k = ∞,

the firm’s optimal output level, q0, solves

c′(q0) = f0, (11)

and its optimal futures position, h0, is a full-hedge, i.e., h0 = q0.

The intuition of Proposition 1 is as follows. If the firm is not liquidity constrained, its

random profit at t = 2 is given by Eq. (2) only. The firm could have completely eliminated

all the price risk had it chosen h = q within its own discretion. Alternatively put, the

degree of price risk exposure to be assumed by the firm should be totally unrelated to

its production decision. The optimal output level is then chosen to maximize f0q − c(q),



Liquidity, Futures Price Dynamics, and Risk Management 9

thereby yielding q0 that solves Eq. (11). Since the futures contracts are unbiased, they

offers actuarially fair “insurance” to the firm. Being risk averse, the firm finds it optimal to

opt for full insurance via a full-hedge, i.e., h0 = q0. These results are simply the well-known

separation and full-hedging theorems of Danthine (1978), Holthausen (1979), and Feder,

Just, and Schmitz (1980).

4. The case of infinite capital endowments

In this section, we consider the case that the firm is endowed with an infinite amount

of capital, k = ∞, and optimally chooses the liquidity threshold, k, at t = 0. This is also

the case analyzed by Wong (2008).

The following proposition characterizes the firm’s optimal liquidation threshold, k∗, as

a function of the autocorrelation coefficient, ρ.

Proposition 2. Given that the competitive firm is endowed with an infinite amount of

capital, k̄ = ∞, and optimally devises its futures hedge program, (h∗, k∗), the firm commits

to the optimal liquidation threshold, k∗, that is positive and finite (infinite) if the autocor-

relation coefficient, ρ, is positive (non-positive).

The intuition of Proposition 2 is as follows. If the firm chooses k = ∞, risk sharing

is ex-ante efficient because the firm can completely eliminate all the price risk. However,

this is not ex-post efficient, especially when ρ > 0. To see this, note that for any given

k < ∞ the firm prematurely liquidates its futures position at t = 1 for all ε1 ∈ [k/h,∞).

Conditioned on premature liquidation, the expected value of f2 is equal to f1 + ρε1, which

is greater (not greater) than f1 when ρ > (≤) 0. Thus, it is ex-post optimal for the firm to

liquidate its futures position prematurely to limit further losses if ρ > 0. In this case, the

firm chooses the optimal threshold level, k∗, to be finite so as to strike a balance between

ex-ante and ex-post efficient risk sharing. If ρ ≤ 0, premature liquidation is never ex-post
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optimal and thus the firm chooses k∗ = ∞.

The following proposition is an immediate consequence of Propositions 1 and 2.

Proposition 3. Given that the competitive firm is endowed with an infinite amount of

capital, k̄ = ∞, and optimally devises its futures hedge program, (h∗, k∗), the firm’s optimal

output level, q∗, equals the benchmark level, q0, and its optimal futures position, h∗, is a

full-hedge, i.e., h∗ = q∗, if the autocorrelation coefficient, ρ, is non-positive.

When ρ > 0, Proposition 2 implies that the firm voluntarily chooses to be liquidity

constrained, i.e., k∗ < ∞. Hence, in this case, condition (6) holds with equality and the

solution, (q∗, h∗, k∗), solves Eqs. (4), (5), and (6) simultaneously. The following proposition

characterizes the liquidity constrained firm’s optimal futures position, h∗.

Proposition 4. Given that the competitive firm is endowed with an infinite amount of

capital, k̄ = ∞, and optimally devises its futures hedge program, (h∗, k∗), the firm’s optimal

futures position, h∗, is an over-hedge, i.e., h∗ > q∗, if the autocorrelation coefficient, ρ, is

positive and the firm’s utility function, u(π), satisfies either constant or increasing absolute

risk aversion.

To see the intuition of Proposition 4, we refer to Eqs. (1) and (2). If the firm adopts a

full-hedge, i.e., h = q, its profit at t = 2 remains stochastic due to the residual price risk,

(ρε1+δ)q, that arises from the premature closure of its hedge program at t = 1. This creates

an income effect because the presence of the liquidity risk reduces the attainable expected

utility under risk aversion. To attain the former expected utility level (with no risk), the

firm has to be compensated with additional income. Taking away this compensation gives

rise to the income effect (see Wong, 1997). Under IARA (DARA), the firm becomes less

(more) risk averse and thus is willing (unwilling) to take on the liquidity risk. The firm

as such shorts more (less) of the futures contracts so as to enlarge (shrink) the interval,

[k/h,∞), over which the premature liquidation of the futures position at t = 1 prevails.
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Since ρ > 0, inspection of Eqs. (1) and (2) reveals that the high (low) realizations of

the firm’s random profit at t = 2 occur when the futures position is (is not) prematurely

liquidated at t = 1. Being risk averse, the firm would like to shift profits from the high-

profit states to the low-profit states. This goal can be achieved by shorting more of the

futures contracts, i.e., h > q, as is evident from Eqs. (1) and (2). Such an over-hedging

incentive is reinforced (alleviated) under IARA (DARA). Thus, the firm optimally opts for

an over-hedge, i.e., h∗ > q∗, under either CARA or IARA.

5. The case of finite capital endowments

In this section, we consider the case that the firm is endowed with a finite amount of

capital, 0 < k < ∞, and optimally chooses the liquidity threshold, k, at t = 0.

Suppose that the capital constraint is strictly binding, i.e., λ∗ > 0 so that k∗ = k̄.7 The

Kuhn-Tucker conditions for program (3) under the binding capital constraint become

∫ k̄/h∗

−∞
E{u′(π∗

c )[f0 + (1 + ρ)ε1 + δ − c′(q∗)]}g(ε1) dε1

+
∫ ∞

k̄/h∗
E{u′(π∗

` )[f0 + (1 + ρ)ε1 + δ − c′(q∗)]}g(ε1) dε1 = 0, (12)

−
∫ k̄/h∗

−∞
E{u′(π∗

c )[(1 + ρ)ε1 + δ]}g(ε1) dε1 −
∫ ∞

k̄/h∗
E[u′(π∗

` )]ε1g(ε1) dε1

−E[u(π∗
c0) − u(π∗

`0)]g(k̄/h∗)k̄/h∗2 = 0, (13)

and

E[u(π∗
c0) − u(π∗

`0)] > 0, (14)

where π∗
c0 = f0q

∗+[(1+ρ)k̄/h∗+δ](q−h∗)−c(q∗) and π∗
`0 = [f0+(1+ρ)k̄/h∗+δ]q∗−k̄−c(q∗).

7This is the case analyzed by Lien (2003) and Wong (2004a, 2004b), and Wong and Xu (2006) who
restrict the correlation coefficient, ρ, to be zero, i.e., the futures price dynamics follows a random walk.
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To examine the firm’s optimal futures position, h∗, under the binding capital constraint,

we let L(ρ) be the left-hand side of Eq. (13) evaluated at h∗ = q∗:

L(ρ) = −(1 + ρ)u′[f0q
∗ − c(q∗)]

∫ k̄/q∗

−∞
ε1g(ε1) dε1

−
∫ ∞

k̄/q∗
E{u′[(f0 + ρε1 + δ)q∗ − c(q∗)]}ε1g(ε1) dε1

+
{

E{u[(f0 + δ)q∗ + ρk̄ − c(q∗)]} − u[f0q
∗ − c(q∗)]

}
g(k̄/q∗)k̄/q∗2. (15)

Since ε1 has a mean of zero, we can write Eq. (15) as

L(ρ) =
∫ ∞

k̄/q∗

{
(1 + ρ)u′[f0q

∗ − c(q∗)] − E{u′[(f0 + ρε1 + δ)q∗ − c(q∗)]}
}
ε1g(ε1) dε1

+
{

E{u[(f0 + δ)q∗ + ρk̄ − c(q∗)]} − u[f0q
∗ − c(q∗)]

}
g(k̄/q∗)k̄/q∗2. (16)

If L(ρ) < (>) 0, it follows from Eq. (13) and the second-order condition for program (3)

that h∗ < (>) q∗.

When there are multiple sources of uncertainty, it is well-known that the Arrow-Pratt

theory of risk aversion is usually too weak to yield intuitively appealing results (Gollier,

2001). Kimball (1990, 1993) defines u′′′(π) ≥ 0 as prudence, which measures the propensity

to prepare and forearm oneself under uncertainty, vis-à-vis risk aversion that is how much

one dislikes uncertainty and would turn away from it if one could. As shown by Leland

(1968), Drèze and Modigliani (1972), and Kimball (1990), prudence is both necessary and

sufficient to induce precautionary saving. Moreover, prudence is implied by decreasing

absolute risk aversion, which is instrumental in yielding many intuitive comparative statics

under uncertainty (Gollier, 2001).

The following proposition characterizes the firm’s optimal futures position, h∗, under

the binding capital constraint, k∗ = k̄.

Proposition 5. Given that the competitive firm is endowed with a finite amount of capital,

0 < k̄ < ∞, and optimally devises its futures hedge program, (h∗, k∗), such that k∗ = k̄,



Liquidity, Futures Price Dynamics, and Risk Management 13

the firm’s optimal futures position, h∗, is an under-hedge, a full-hedge, or an over-hedge,

depending on whether the autocorrelation coefficient, ρ, is less than, equal to, or greater

than ρ∗, respectively, where ρ∗ > 0 uniquely solves L(ρ∗) = 0, if the firm is prudent.

To see the intuition of Proposition 5, we refer to Eqs. (1) and (2). If the firm adopts a

full-hedge, i.e., h = q∗, its random profit at t = 2 becomes

π =





f0q
∗ − c(q∗) if ε1 ≤ k̄/q∗,

(f0 + ρε1 + δ)q∗ − c(q∗) if ε1 > k̄/q∗.
(17)

Eq. (17) implies that a full-hedge is not optimal due to the residual output price risk,

(ρε1 + δ)q∗, that arises from the premature liquidation of the futures position at t = 1.

According to Kimball (1990, 1993), the prudent firm is more sensitive to low realizations

of its random profit at t = 2 than to high ones. If ρ is not too (is sufficiently) positive, i.e.,

ρ < (>) ρ∗, it is evident from Eq. (17) that the low realizations of the firm’s random profit

at t = 2 occur when the futures position is (is not) prematurely liquidated at t = 1. Thus,

to avoid these realizations the prudent firm has incentives to short less (more) of the futures

contracts, i.e., h < (>) q∗, so as to shrink (enlarge) the interval, [k̄/h,∞), over which the

premature liquidation of the futures position prevails at t = 1. The prudent firm as such

optimally opts for an under-hedge (over-hedge), i.e., h∗ < (>) q∗, when ρ < (>) ρ∗.

Proposition 5 characterizes the firm’s optimal futures position only when the capital

constraint is indeed binding, which is the case when condition (14) holds. The following

proposition characterizes sufficient conditions under which condition (14) holds.

Proposition 6. Given that the competitive firm is endowed with a finite amount of capital,

0 < k̄ < ∞, and is prudent, the firm finds it optimal to put aside all of its capital stock, k̄,

for the futures hedge program, (h∗, k∗), if the autocorrelation coefficient, ρ, is non-positive.

If the firm were endowed with an infinite amount of capital, we know from Proposition

2 that the firm would have chosen k∗ = ∞ for all ρ ≤ 0. Since k̄ is in fact finite, it follows
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that the firm optimally chooses k∗ = k̄ for all ρ ≤ 0, as is shown in Proposition 6.

We now consider the case that the capital constraint is non-binding or just binding, i.e.,

λ∗ = 0. From Proposition 6, we know that a necessary condition for this case is that ρ > 0.

The Kuhn-Tucker conditions for program (3) under the non-binding or just-binding capital

constraint become

∫ k∗/h∗

−∞
E{u′(π∗

c )[f0 + (1 + ρ)ε1 + δ − c′(q∗)]}g(ε1) dε1

+
∫ ∞

k∗/h∗
E{u′(π∗

` )[f0 + (1 + ρ)ε1 + δ − c′(q∗)]}g(ε1) dε1 = 0, (18)

−
∫ k∗/h∗

−∞
E{u′(π∗

c )[(1 + ρ)ε1 + δ]}g(ε1) dε1 −
∫ ∞

k∗/h∗
E[u′(π∗

` )]ε1g(ε1) dε1 = 0, (19)

and

E[u(π∗
c0) − u(π∗

`0)] = 0, (20)

where π∗
c0 = f0q

∗ + [(1+ ρ)k∗/h∗ + δ](q∗− h∗)− c(q∗) and π∗
`0 = [f0 + (1+ ρ)k∗/h∗ + δ]q∗ −

k∗ − c(q∗). We derive the solution in the case that the firm’s preferences exhibit constant

absolute risk aversion in the following proposition.8

The following proposition characterizes the firm’s optimal futures position, h∗, under

the non-binding capital constraint, i.e., k∗ < k̄, or the just binding capital constraint, i.e.,

k∗ = k̄.

Proposition 7. Given that the competitive firm is endowed with a finite amount of capital,

0 < k̄ < ∞, and has constant absolute risk aversion, the firm’s optimal futures position, h∗,

is an over-hedge, i.e., h∗ > q, and the autocorrelation coefficient, ρ, is greater than ρ∗, if

the capital constraint is either non-binding or just binding.

The intuition of Proposition 7 is similar to that of Proposition 4 and thus is omitted.
8We do not consider increasing absolute risk aversion (IARA) because IARA is inconsistent with prudence.
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6. Numerical examples

To gain more insights into the theoretical findings, we construct numerical examples to

quantity the severity of the endogenous liquidity constraint, which is inversely gauged by

the optimal liquidation threshold, k∗. We assume that the firm has a negative exponential

utility function: u(π) = −e−γπ , where γ > 0 is the constant Arrow-Pratt measure of

absolute risk aversion. We further assume that ε1 and δ are normally distributed with

means of zero and variances of 0.01. For normalization, we set q = f0 = 1 and c(q) = 0.

Table 1 report the firm’s optimal futures position, h∗, for the case that the liquidation

threshold, k, is exogenously set equal to the fixed capital endowment, k̄. Setting γ = 2, we

document the firm’s optimal futures position, h∗, and the critical autocorrelation coefficient,

ρ∗, for different values of k and ρ.

(Insert Table 1 here.)

As is evident from Table 1, h∗ < (>) 1 when ρ < (>) ρ∗, in accord with Proposition 5.

Table 1 also reveals that h∗ moves further away from a full-hedge as k̄ decreases. That is,

when the exogenous liquidity constraint becomes more severe, the firm has to deviate more

from full-hedging so as to better cope with the output price uncertainty and the liquidity

risk simultaneously.

Table 2 reports the firm’s optimal futures position, h∗, and the optimal liquidation

threshold, k∗, when the capital constraint is not binding, i.e., k∗ < k̄. We document the

firm’s optimal futures hedge program, (h∗, k∗), for different values of γ and ρ.

(Insert Table 2 here.)

Table 2 shows that a full-hedge is optimal if ρ is small, or else an over-hedge is optimal,

implying that an under-hedge is never used. It is also evident from Table 2 that k∗ decreases

as either ρ increases or γ decreases. That is, the firm is willing to commit itself to a more
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aggressive (i.e., severe) liquidity constraint provided that premature liquidation is indeed

ex-post profitable or that the firm is less risk averse and thus does not mind to take on

excessive risk.

Table 3 reports the firm’s optimal futures position, h∗, and the optimal liquidation

threshold, k∗, when the capital constraint can be binding, i.e., k∗ = k̄. Setting γ = 2 and

k̄ = 0.2, we document the firm’s optimal futures hedge program, (h∗, k∗), for different values

of ρ.

(Insert Table 3 here.)

It is evident from Table 3 that the capital constraint is binding, i.e., k∗ = k̄, for all

ρ < 0.05, and is non-binding, i.e., k∗ < k̄, for all ρ ≥ 0.05. Furthermore, in the case of

non-binding capital constraint, the firm’s optimal futures position, h∗, is an over-hedge, i.e.,

h∗ > q, and the autocorrelation coefficient, ρ, exceeds the critical level, ρ∗, that is defined

in Proposition 5. These results are consistent with Proposition 7.

7. Conclusion

In this paper, we have examined the optimal design of a futures hedge program by the

competitive firm under output price uncertainty (Sandmo, 1971). The firm’s futures hedge

program consists of a futures position and an amount of capital earmarked for the program.

The firm is subject to a capital constraint in that the earmarked capital cannot exceed

the firm’s capital endowment. Due to the capital constraint and the marking-to-market

procedure of futures contracts, the firm faces endogenous liquidity risk. The futures price

dynamics follows a first-order autoregression that includes a random walk as a special case.

When the futures prices are sufficiently positively correlated, we have shown that the

capital constraint is non-binding. In this case, the optimal amount of capital earmarked

to the futures hedge program is less than the firm’s capital endowment. Furthermore,
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the firm’s optimal futures position is likely to be an over-hedge for reasonable preferences.

When the futures prices are not too positively correlated, we have shown that the capital

constraint is binding. In this case, the firm optimally puts aside all of its capital stock for

the futures hedge program. Furthermore, the firm’s optimal futures position is an under-

hedge or an over-hedge, depending on whether the autocorrelation coefficient of the futures

price dynamics is below or above a critical positive value, respectively.

Appendix A

The firm’s ex-ante decision problem is to choose a futures position, h, so as to maximize

the expected utility of its random profit at t = 2, EU :

∫ k/h

−∞
E

{
u{f0q + [(1 + ρ)ε1 + δ](q − h) − c(q)}

}
g(ε1) dε1

+
∫ ∞

k/h
E

{
u{f0q + ε1[(1 + ρ)q − h] + δq − c(q)}

}
g(ε1) dε1 (A.1)

if h > 0, and

∫ k/h

−∞
E

{
u{f0q + ε1[(1 + ρ)q − h] + δq − c(q)}

}
g(ε1) dε1

+
∫ ∞

k/h
E

{
u{f0q + [(1 + ρ)ε1 + δ](q − h) − c(q)}

}
g(ε1) dε1 (A.2)

if h < 0. In order to solve the firm’s optimal futures position, h∗, we need to know which

equation, Eq. (A.1) or Eq. (A.2), contains the solution.

Consider first the case that h > 0. Using Leibniz’s rule to partially differentiate EU as

defined in Eq. (A.1) with respect to h and evaluating the resulting derivative at h → 0+

yields

lim
h→0+

∂EU

∂h
= −

∫ ∞

−∞
E

{
u′{[f0 + (1 + ρ)ε1 + δ]q − c(q)}[(1+ ρ)ε1 + δ]

}
g(ε1) dε1.(A.3)
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Since ε1 and δ has means of zero, the right-hand side of Eq. (A.3) is simply the negative of

the covariance between u′{[f0+(1+ρ)ε1+δ]q−c(q)} and (1+ρ)ε1+δ with respect to the joint

probability density function of ε1 and δ. Since u′′(π) < 0, we have limh→0+ ∂EU/∂h > 0.

Now, consider the case that h < 0. Using Leibniz’s rule to partially differentiate EU as

defined in Eq. (A.2) with respect to h and evaluating the resulting derivative at h → 0−

yields

lim
h→0−

∂EU

∂h
= −

∫ ∞

−∞
E

{
u′{[f0 + (1 + ρ)ε1 + δ]q − c(q)}[(1+ ρ)ε1 + δ]

}
g(ε1) dε1.(A.4)

Inspection of Eqs. (A.3) and (A.4) reveals that limh→0+ ∂EU/∂h = limh→0− ∂EU/∂h > 0.

Since EU as defined in either Eq. (A.1) or Eq. (A.2) is strictly concave, the firm’s optimal

futures position, h∗, must be a short position, i.e., h∗ > 0.

Appendix B

Proof of Proposition 1. Adding Eq. (10) to Eq. (9) yields

[f0 − c′(q0)]
∫ ∞

−∞
E[u′(π0

c )]g(ε1) dε1 = 0. (B.1)

Since u′(π) > 0, Eq. (B.1) reduces to Eq. (11). If h0 = q0, the left-hand side of Eq. (10)

becomes

−(1 + ρ)u′[f0q
0 − c(q0)]

∫ ∞

−∞
ε1g(ε1) dε1 = 0, (B.2)

since ε1 and δ have means of zero. Inspection of Eqs. (10) and (B.2) reveals that h0 = q0

is indeed the optimal futures position.

Proof of Proposition 2. To facilitate the proof, we fix h = q = q0 in program (3) to yield

max
k≥0

u[f0q
0 − c(q0)]

∫ k/q0

−∞
g(ε1) dε1
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+
∫ ∞

k/q0
E{u[(f0 + ρε1 + δ)q0 − c(q0)]}g(ε1) dε1. (B.3)

The Kuhn-Tucker condition for program (B.3) is given by

{
u[f0q

0 − c(q0)]− E{u[(f0 + δ)q0 + ρk0 − c(q0)]}
}
g(k0/q0)/q0 ≥ 0, (B.4)

where k0 is the optimal liquidity threshold when h = q = q0. Should k0 < ∞, condition

(B.4) holds with equality.

If ρ ≤ 0, it follows from u′′(π) < 0, E(δ) = 0, and Jensen’s inequality that u[f0q
0 −

c(q0)] ≥ u[f0q
0+ρk0−c(q0)] > E{u[(f0+δ)q0+ρk0−c(q0)]}, and thus k0 = ∞ by condition

(B.4). Since Proposition 1 implies that h∗ = q∗ = q0 if k∗ = ∞, it must be the case that

h∗ = q∗ = q0 and k∗ = ∞ if k0 = ∞. On the other hand, if ρ > 0, it is evident that

E{u[(f0 + δ)q0 + ρk − c(q0)]} is increasing in k. When k = 0, it follows from u′′(π) < 0,

E(δ) = 0, and Jensen’s inequality that E{u[(f0 + δ)q0 − c(q0)]} < u[f0q
0 − c(q0)]. Also, for

k sufficiently large, it must be the case that E{u[(f0 + δ)q0 + ρk− c(q0)]} > u[f0q
0 − c(q0)].

Thus, there exists a unique point, k0 ∈ (0,∞), such that condition (B.4) holds with equality.

Suppose that k∗ = ∞ but k0 < ∞. It then follows from Proposition 1 that h∗ = q∗ = q0,

which would imply that k0 = k∗ = ∞, a contradiction to k0 < ∞.

Proof of Proposition 3. When ρ ≤ 0, Proposition 2 implies that k∗ = ∞. It then follows

from Proposition 1 that h∗ = q∗ = q0.

Proof of Proposition 4. To facilitate the proof, we reformulate the firm’s ex-ante decision

problem as a two-stage optimization problem with q fixed at q∗. In the first stage, the firm

chooses its optimal liquidation threshold, k(h), for a given futures position, h:

k(h) = argmax
k≥0

∫ k/h

−∞
E[u(πc)]g(ε1) dε1 +

∫ ∞

k/h
E[u(π`)]g(ε1) dε1, (B.5)

where π` and πc are given in Eqs. (1) and (2) with q = q∗, respectively. In the second stage,

the firm chooses its optimal futures position, h∗, taking the liquidation threshold, k(h), as
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given by Eq. (B.5):

max
h

F (h) =
∫ k(h)/h

−∞
E[u(πc)]g(ε1) dε1 +

∫ ∞

k(h)/h
E[u(π`)]g(ε1) dε1, (B.6)

where π` and πc are given in Eqs. (1) and (2) with q = q∗ and k = k(h), respectively. The

complete solution is thus given by h∗ and k∗ = k(h∗).

Differentiating F (h) in Eq. (B.6) with respect to h, using the envelope theorem, and

evaluating the resulting derivative at h = q∗ yields

F ′(q∗) = −(1 + ρ)u′[f0q
∗ − c(q∗)]

∫ k(q∗)/q∗

−∞
ε1g(ε1) dε1

−
∫ ∞

k(q∗)/q∗
E{u′[(f0 + ρε1 + δ)q∗ − c(q∗)]}ε1g(ε1) dε1, (B.7)

where k(q∗) solves

u[f0q
∗ − c(q∗)] = E{u[(f0 + δ)q∗ + ρk(q∗)− c(q∗)]}. (B.8)

It is evident from Eq. (B.8) that ρk(q∗) is equal to the risk premium of the zero-mean risk,

δq∗, in the usual Arrow-Pratt sense.

Rewrite Eq. (B.8) as

u[f0q
∗ − c(q∗) + m] = E{u[(f0 + δ)q∗ + ρk(q∗) − c(q∗) + m]}, (B.9)

where m can be interpreted as endowed wealth that takes on an initial value of zero.

Differentiating Eq. (B.9) with respect to m and evaluating the resulting derivative at

m = 0 yields

∂ρk(q∗)
∂m

∣∣∣∣
m=0

=
u′[f0q

∗ − c(q∗)]− E{u′[(f0 + δ)q∗ + ρk(q∗) − c(q∗)]}
E{u′[(f0 + δ)q∗ + ρk(q∗)− c(q∗)]} . (B.10)

If u(π) satisfies decreasing, constant, or increasing absolute risk aversion (DARA, CARA,

or IARA), ∂ρk(q∗)/∂m is negative, zero, or positive, respectively. Using the fact that ε1

has a mean of zero, Eq. (B.7) can be written as

F ′(q∗) =
∫ ∞

k(q∗)/q∗

{
(1 + ρ)u′[f0q

∗ − c(q∗)]
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−E{u′[(f0 + ρε1 + δ)q∗ − c(q∗)]}
}

ε1g(ε1) dε1. (B.11)

If u(π) satisfies CARA (IARA), Eq. (B.10) implies that

u′[f0q
∗ − c(q∗)] = (>) E{u′[(f0 + δ)q∗ + ρk(q∗)− c(q∗)]}. (B.12)

Since ρ > 0, Eq. (B.22) and risk aversion imply that (1 + ρ)u′[f0q
∗ − c(q∗)] > E{u′[(f0 +

δ)q∗+ρk(q∗)−c(q∗)]} > E{u′[(f0 +ρε1 +δ)q∗−c(q∗)]} for all ε1 > k(q∗)/q∗. It then follows

from Eq. (B.11) that F ′(q∗) > 0 and thus h∗ > q∗ if u(π) satisfies either CARA or IARA.

Proof of Proposition 5. Differentiating L(ρ) with respect to ρ yields

L′(ρ) =
∫ ∞

k̄/q∗

{
u′[f0q

∗ − c(q∗)]− E{u′′[(f0 + ρε1 + δ)q∗ − c(q∗)]}ε1q

}
ε1g(ε1) dε1

+E{u′[(f0 + δ)q∗ + ρk̄ − c(q∗)]}g(k̄/q∗)k̄2/q∗2. (B.13)

Since u′(π) > 0 and u′′(π) < 0, Eq. (B.13) implies that L′(ρ) > 0. Evaluating Eq. (16) at

ρ = 0 yields

L(0) =
{

u′[f0q
∗ − c(q∗)]− E{u′[(f0 + δ)q∗ − c(q∗)]}

}∫ ∞

k̄/q∗
ε1g(ε1) dε1

+
{

E{u[(f0 + δ)q∗ − c(q∗)]} − u[f0q
∗ − c(q∗)]

}
g(k̄/q∗)k̄/q∗2. (B.14)

Since u′′(π) < 0 and E(δ) = 0, Jensen’s inequality implies that E{u[(f0 + δ)q∗ − c(q∗)]} <

u[f0q
∗ − c(q∗)]. The second term on the right-hand side of Eq. (B.14) is negative. Since

u′′′(π) ≥ 0, it follows from E(δ) = 0 and Jensen’s inequality that E{u′[(f0 +δ)q∗−c(q∗)]} ≥

u′[f0q
∗−c(q∗)]. The first term on the right-hand side of Eq. (B.14) is non-positive and thus

L(0) < 0. Now, consider the case that ρ is sufficiently large such that (1+ρ)u′[f0q
∗−c(q∗)] >

E{u′[(f0+ρε1+δ)q∗−c(q∗)]} for all ε1 > 0 and u[f0q
∗−c(q∗)] < E{u[(f0+δ)q∗+ρk̄−c(q∗)]}.

Thus, for ρ sufficiently large, it follows from Eq. (16) that L(ρ) > 0. Since L(0) < 0,

L(ρ) > 0 for ρ sufficiently large, and L′(ρ) > 0, there must exist a unique point, ρ∗ > 0,
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that solves L(ρ∗) = 0. Thus, for all ρ < (>) ρ∗, we have L(ρ) < (>) 0. It then follows

from Eq. (13) and the second-order condition for program (3) that h∗ < (>) q∗ for all

ρ < (>) ρ∗.

Proof of Proposition 6. Let Φ(π∗
`0) and Ψ(π∗

c0) be the cumulative distribution functions

(CDFs) of π∗
`0 and π∗

c0 defined in condition (14), respectively, and let

T (x) =
∫ x

−∞
[Φ(y)− Ψ(y)] dy. (B.15)

Using Eq. (B.15), we can write the left-hand side of condition (14) as

E[u(π∗
`0)]− E[u(π∗

c0)] =
∫ ∞

−∞
u(x) d[Φ(x)− Ψ(x)] =

∫ ∞

−∞
u′′(x)T (x) dx, (B.16)

where the second equality follows from u′(∞) = 0 and integration by parts. In light of Eq.

(B.16), condition (14) holds if Φ(x) is either a second-order stochastic dominance shift or a

mean-preserving-spread shift of Ψ(x).

Note that T (−∞) = 0 and

T (∞) =
∫ ∞

−∞
[Φ(x)− Ψ(x)] dx =

∫ ∞

−∞
x dΨ(x) −

∫ ∞

−∞
x dΦ(x) = −ρk̄, (B.17)

where the second equality follows from integration by parts. Since ρ ≤ 0, Eq. (B.17) implies

that T (∞) ≥ 0, where the equality holds only when ρ = 0. We can write

π∗
`0 = π∗

c0 + ρk̄ + δh∗

= π∗
c0 +

[
π∗

c0 − f0q
∗ − k̄

(
q∗ − h∗

h∗

)
+ c(q∗)

](
h∗

q∗ − h∗

)
. (B.18)

Using the change-of-variable technique (Hogg and Craig, 1989) and Eq. (B.18), we have

Ψ(π∗
c0) = Φ{π∗

c0 + [π∗
c0 − f0q

∗ − k̄(q∗ − h∗)/h∗ + c(q∗)]h∗/(q∗ − h∗)}. Differentiating T (x)

in Eq. (B.15) with respect to x and using Leibniz’s rule yields T ′(x) = Φ(x) − Ψ(x). It

follows from Ψ(x) = Φ{x + [x − f0q
∗ − k̄(q∗ − h∗)/h∗ + c(q∗)]h∗/(q∗ − h∗)} and h∗ < q∗

that Φ(x) − Ψ(x) > (<) 0 if x < (>) f0q
∗ + k̄(q∗ − h∗)/h∗ − c(q∗). Hence, T (x) is strictly
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increasing for all x < f0q
∗ + k̄(q∗ − h∗)/h∗ − c(q∗) and strictly decreasing for all x >

f0q
∗ + k̄(q∗− h∗)/h∗− c(q∗). Since T (−∞) = 0, T (∞) ≥ 0, and T (x) is first increasing and

then decreasing in x, we have T (x) > 0 for all x. In other words, Φ(x) is a second-order

stochastic dominance shift of Ψ(x) for all ρ < 0 and is a mean-preserving-spread shift of

Ψ(x) when ρ = 0. Thus, for all ρ ≤ 0, Eq. (B.16) implies that E[u(π∗
c0)] > E[u(π∗

`0)] given

risk aversion.

Proof of Proposition 7. To facilitate the proof, the firm’s ex-ante decision problem is

formulated as a two-stage optimization problem. In the first stage, the firm chooses its

optimal liquidation threshold, k(h), for a given short futures position, h:

k(h) = argmax
k≥0

∫ k/h

−∞
E[u(πc)]g(ε1) dε1 +

∫ ∞

k/h
E[u(π`)]g(ε1) dε1, (B.19)

where π` and πc are given in Eqs. (1) and (2) with q = q∗, respectively. In the second stage,

the firm chooses its optimal futures position, h∗, taking the liquidation threshold, k(h), as

given by Eq. (B.19):

max
h

G(h) =
∫ k(h)/h

−∞
E[u(πc)]g(ε1) dε1 +

∫ ∞

k(h)/h
E[u(π`)]g(ε1) dε1, (B.20)

where π` and πc are given in Eqs. (1) and (2) with q = q∗ and k = k(h), respectively. The

complete solution is thus given by h∗ and k∗ = k(h∗), which also solves Eqs. (19) and (20).

Differentiating G(h) in Eq. (B.20) with respect to h, using the envelope theorem, and

evaluating the resulting derivative at h = q∗ yields

G′(q∗) = −(1 + ρ)u′[f0q
∗ − c(q∗)]

∫ k(q∗)/q∗

−∞
ε1g(ε1) dε1

−
∫ ∞

k(q∗)/q∗
E{u′[(f0 + ρε1 + δ)q∗ − c(q∗)]}ε1g(ε1) dε1, (B.21)

where k(q∗) solves

u[f0q
∗ − c(q∗)] = E{u[(f0 + δ)q∗ + ρk(q∗)− c(q∗)]}. (B.22)



Liquidity, Futures Price Dynamics, and Risk Management 24

It is evident from Eq. (B.22) that ρk(q∗) is equal to the risk premium of the zero-mean

risk, δq∗, in the usual Arrow-Pratt sense.

Rewrite Eq. (B.22) as

u[f0q
∗ − c(q∗) + m] = E{u[(f0 + δ)q∗ + ρk(q∗) − c(q∗) + m]}, (B.23)

where m can be interpreted as endowed wealth that takes on an initial value of zero.

Differentiating Eq. (B.23) with respect to m and evaluating the resulting derivative at

m = 0 yields

∂ρk(q∗)
∂m

∣∣∣∣
m=0

=
u′[f0q

∗ − c(q∗)]− E{u′[(f0 + δ)q∗ + ρk(q∗) − c(q∗)]}
E{u′[(f0 + δ)q∗ + ρk(q∗)− c(q∗)]} . (B.24)

Since u(π) satisfies CARA, Eq. (B.24) implies that

u′[f0q
∗ − c(q∗)] = E{u′[(f0 + δ)q∗ + ρk(q∗) − c(q∗)]}. (B.25)

Using the fact that ε1 has a mean of zero, we can write Eq. (B.21) as

G′(q∗) =
∫ ∞

k(q∗)/q∗

{
(1 + ρ)u′[f0q

∗ − c(q∗)]

−E{u′[(f0 + ρε1 + δ)q∗ − c(q∗)]}
}

ε1g(ε1) dε1. (B.26)

Since ρ > 0, Eq. (B.25) and risk aversion imply that (1 + ρ)u′[f0q
∗ − c(q∗)] > E{u′[(f0 +

δ)q∗+ρk(q∗)−c(q∗)]} > E{u′[(f0 +ρε1 +δ)q∗−c(q∗)]} for all ε1 > k(q∗)/q∗. It then follows

from Eq. (B.26) that G′(q∗) > 0 and thus h∗ > q∗ if u(π) satisfies CARA.

Suppose that there is a point, ρ1 ∈ (0, ρ∗], at which the capital constraint is either non-

binding or just binding. Since k∗ = k̄ for all ρ ≤ 0 according to Proposition 2, continuity

implies that there must exist a point, ρ2 ∈ (0, ρ1], such that the capital constraint is just

binding, i.e., k∗ = k̄. Since ρ2 ≤ ρ∗, Proposition 1 implies that h∗ ≤ q at ρ2, a contradiction

to our conclusion that h∗ > q if the capital constraint is either non-binding or just binding.

Hence, our supposition is wrong so that ρ > ρ∗ whenever the capital constraint is either

non-binding or just binding.
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Table 1
Optimal futures positions under exogenous liquidity constraints

k̄ = 0.05 k̄ = 0.1 k̄ = 0.15 k̄ = 0.2

ρ∗ h∗ ρ∗ h∗ ρ∗ h∗ ρ∗ h∗

ρ = 0.01 0.9381 0.9337 0.9566 0.9787
ρ = 0.03 0.9728 0.9659 0.9801 0.9906

0.0460 1.0000 0.0514 1.0000 0.0462 1.0000 0.0395 1.0000
ρ = 0.07 1.0391 1.0286 1.0287 1.0225
ρ = 0.09 1.0707 1.0592 1.0538 1.0383

Notes: The competitive firm has a negative exponential utility function: u(π) = −e−2π .
The underlying random variables, ε1 and δ, are normally distributed with means of zero
and variances of 0.01. Both the level of output, q, and the initial futures price, f0, are
normalized to unity. The liquidation threshold, k, is exogenously set equal to the firm’s fixed
amount of capital, k̄. This table reports the optimal futures position, h∗, and the critical
autocorrelation coefficient, ρ∗, for different values of the exogenous liquidity constraint, k̄,
and the autocorrelation coefficient, ρ.
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Table 2
Optimal futures hedge programs under non-binding capital constraints

γ = 1 γ = 2 γ = 3 γ = 4

h∗ k∗ h∗ k∗ h∗ k∗ h∗ k∗

ρ = 0.01 1.0000 0.5000 1.0000 0.9884 1.0000 1.4852 1.0000 1.4998
ρ = 0.02 1.0000 0.2494 1.0000 0.5000 1.0000 0.7481 1.0000 0.9901
ρ = 0.05 1.0726 0.1000 1.0070 0.1999 1.0000 0.2970 1.0000 0.3990
ρ = 0.1 1.2313 0.0473 1.0738 0.0997 1.0188 0.1485 1.0073 0.2000
ρ = 0.2 1.5103 0.0185 1.2385 0.0472 1.1349 0.0737 1.1031 0.0990
ρ = 0.5 2.1670 0.0036 1.6292 0.0121 1.4354 0.0243 1.3294 0.0357

Notes: The competitive firm has a negative exponential utility function: u(π) = −e−γπ ,
where γ is a positive constant. The underlying random variables, ε1 and δ, are normally
distributed with means of zero and variances of 0.01. Both the level of output, q, and
the initial futures price, f0, are normalized to unity. The capital constraint is assumed to
be non-binding, i.e., k∗ < k̄. This table reports the optimal futures position, h∗, and the
optimal liquidation threshold, k∗, for different values of the risk aversion coefficient, γ, and
the autocorrelation coefficient, ρ.
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Table 3
Optimal futures hedge programs

ρ 0.01 0.03 0.0395 0.05 0.1 0.2 0.5

h∗ 0.9787 0.9906 1.0000 1.0070 1.0738 1.2385 1.6292

k∗ 0.2 0.2 0.2 0.1999 0.0997 0.0472 0.0121

Notes: The competitive firm has a negative exponential utility function: u(π) = −e−2π

and is endowed with a fixed amount of capital, k̄, set equal to 0.2. The underlying random
variables, ε1 and δ, are normally distributed with means of zero and variances of 0.01.
Both the level of output, q, and the initial futures price, f0, are normalized to unity. The
critical value, ρ∗, as defined in Proposition 5 is 0.0395. This table reports the optimal
futures position, h∗, and the optimal liquidation threshold, k∗, for different values of the
autocorrelation coefficient, ρ.


